
This paper deals with the nature of the sampling errors which
may occur in measurement of area by a square pattern 'dot
planimeter'. The important conclusion is that the relative
error of measurement is small if the count of points is of the
order of 100 per parcel. The authors recommend the use of
different sizes of point pattern for the measurement of differ-
ent sizes of parcel, rather than the use of a single overlay for
the measurement of every parcel on agiven map. The theoretical
work is supported by some results of measurements made on the
McKay Pattern Map using the MK Area Calculator.
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Introduction
The technique of measuring areas on maps and plans by

counting the number of points on a transparent overlay
which occur within the boundary of an enclosed parcel has
now been used for about thirty years. We believe that this
sampling technique was first used by Abelll for area
measurement in forestry work. Although it can be used in
other branches of the natural sciences it appears to have
been used less often than some of the other methods which
are available to the map user. There are possibly three
reasons for the relatively small use of the method.
In the first place it is still frequently confused with the

method of area measurement by counting the number of
squares and fractions of square which coincide with a parcel
when a transparent square grid is placed over it. This
'Method of Squares' is what most students are taught and
it appears superficially to be identical with counting points.
However point counting techniques differ from counting
squares because no attempt is made to estimate fractional
parts round the perimeter of the parcel. Hence the total
count of points will always be an integer value. The apparent
loss of accuracy resulting from this approximation is
compensated for by treating it as a form of statistical
sampling and therefore in point counting techniques it is
necessary to repeat the measuring process several times
using the overlay in different random positions on the map.
Secondly, counting is a repetitive and tedious kind of

work. It is therefore prone to the generation of gross errors
unless very careful controls are included to ensure that the
operator counts each point once and does not forget which
points on the overlay have been counted or forget the total
reached. Manual methods of control, such as making
intermediate booking entries for every 10, 50 or 100 points
counted inevitably increase the time which is needed to
accomplish the measurement. There are now several
different kinds of instrument which can do the counting
automatically and which can be used to mark the overlay
so that the risk of getting lost is more or less eliminated.
These instruments have been described elsewhere.2• 3

The third reason why point counting techniques appear
to have been little used is that there has never been a proper
attempt to investigate the theoretical accuracy of the
methods. A few authors4• 5. 6 have attempted partial ex-
planation of error propagation, but none of these can be
regarded as being adequate. In particular we ought to know
how many points should be counted in order to attain
some predetermined order of accuracy.
We know intuitively that if the area of the parcel is to be

determined from counting Ii few widely-spaced points then
the accuracy of the measurement may be lower than if it is
based upon the count of many points. If however, the
density of points is increased, then the time required to
execute the count will also increase.
The increase in point density follows a geometrical
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progression so that the situation is soon reached when area
measurement by counting points becomes slower than
making the measurements by planimeter2• Existing
knowledge about the optimum separation of points needed
to make reliable measurements economically is almost
wholly empirical. Most people have been content to
construct an overlay by tracing points of intersection from
graph paper and have therefore used a square pattern of
points which are separated by simple multiples or fractions
of the centimetre or inch. They have, by trial and error,
found a separation of the points which appears to provide
sufficient accuracy without making the job of counting too
slow and laborious.
The purpose of the present paper is to attempt an

evaluation of the theoretical accuracy of area measurement
by counting.

The Nature of the Grid Overlay and the Techniques of
Measurement
There are two different techniques of measuring area by

counting points. The method which has been briefly
outlined in the Introduction makes use of a regular pattern
of points on the overlay. This is the method which is most
commonly used and is the method which we will investigate.
The second method involves the use of a random pattern
of points on the overlay. It has been used less frequently
but appears to be a useful technique for sampling the areas
occupied by several different thematic qualities or attributes
on maps or aerial photographs. For example, Stobbs7
has described the application of this technique in evaluating
the areas of different classes of land use in his investigation
of Land Classification in Malawi.
If we place an overlay which shows a regular pattern of

points over the parcel to be measured in a series of random
positions and for every application of the overlay we make
a count of nu n2, n3 • • • nk points then the area of the
parcel, S, will be

S=ii.s ............ (1)

............ (2)

where ii is the arithmetic mean of the points counted and
s is the area of the unit cell formed by the pattern of points.
The pattern may usually be classed as being one of the

three basic geometrical patterns which are labelled I, II
and III in Figure 1. Pattern III is less commonly used than
the other two but it has been described.4
In pattern I the points lie at the intersections of two

families of equidistant parallel straight lines which make an
angle of 60° with one another. This pattern may be inter-
preted equally well as a series of points situated at the
vertices of equilateral triangles having side length du at the
centres of regular hexagons with apothem of length !du at
the centres of tangential circles with diameter du or at the
centres of rhombi whose smaller diagonals are equal to the
side of the rhombus, d1• Figure 1, I also demonstrates that
every point in the pattern will be equidistant from six
neighbouring points. If we take as our unit cell the hexagon
which has each point on the overlay as its centre then the
area of the unit cell may be expressed as:

Sl= ~3 dI"",,0.8660 df

For some reason which is not explained, Bocharov4 gives
different formulae for each of the identical cases comprising
the triangular, hexagonal, circular and rhomboidal patterns.

22

II

III
Figure 1.

D
ow

nl
oa

de
d 

by
 [U

N
SW

 L
ib

ra
ry

] a
t 0

8:
58

 1
7 

A
pr

il 
20

16
 



............ (4)

Pattern II is formed by points which lie at the corners of
adjacent squares. If we denote the distance between the
points, measured along the rows or columns of them as d2,
then the corresponding expression for the area of the unit
cell will be:

............ (3)

We may note that only four points lie at the shortest
distance do. from any given point.
The third pattern (III) is composed of points which are

situated at the centres of contiguous equilateral triangles
with side length Y3.d3, or at the vertices of hexagons which
have side length d3• This pattern is derived from I if every
alternate horizontal row of points is excluded from it. The
area of the unit cell is now

S3= 3~3 d~~ 1.2990 d~

and the number of points which are of equal shortest
distance, d3, from any given point is now only three.
We may compare equations (2), (3) and (4) to find the

relationship which exists between the points in each system
if each cell has equal area.
Thus

V'12 V'27
0.9306 dl~2 d1=d2=-2- d3~1.l398 d3

............ (5)

A variety of different criteria may be used to assess the
uniformity of distribution of points in each pattern. One of
these has already been mentioned, namely the number of
points which are of minimum distance, d, from any given
point. For the three patterns illustrated these represent the
sequence 6, 4, 3. A second criterion is the ratio between the
area occupied by the unit cell of each system. In the three
patterns described these represent the ratio 0.5: 1: 2.
Both of these criteria suggest that the first pattern is

preferable to the second and that both of these are better
than the third. This conclusion is in agreement with most
other writers on the subject.

Possible Influence of Systematic Error
We must also consider the possibility that the pattern of

points on the overlay will influence the count obtained in
some systematic fashion. This has already been argued by
K6ppke5 in his illustration of the relationship between a
long, narrow rectangular parcel and a square pattern of
points. It cannot be denied that errors of measurement may
arise in the single application of the overlay over a small
parcel. If the parcel lies entirely between the rows and
columns of points then the count n=O. On the other hand
if the parcel coincides with one of the rows or columns of
points then a very large count may be obtained. This is
precisely the reason why we have to regard area measure-
ment by this means as a technique of statistical sampling.
One of us2 has already demonstrated that K6ppke's
arguments become invalid if we make repeated counts with
the overlay set in a succession of different random positions.
In the general case of measuring many parcels having

varying sizes and different shapes it would be unreasonable
to expect that significant systematic errors would arise if the
overlay was applied in a truly random fashion. However it is
possible that the shape of the overlay itself may inhibit
random positioning.

The different positions taken by the overlay will differ
from one another by a linear displacement of the point
pattern and by a rotation of the pattern. Since the overlay
is usually constructed on a rectangular piece of plastic it is
conceivable that the operator will tend to place this with
the sides more or less parallel to the map edge or the edge
of the drawing board. This is especially true if the overlay
is large. Then the overlay will not be rotated through any
random angle, but only a small angle, 0, or through multiples
of (rcj2±6). We consider that an overlay constructed upon
a circular disc of plastic facilitates the random angular
setting and that the result of one measurement would not
influence another measurement.
!\. rather different kind of systematic error occurs in

practical measurement if the separation of the points differs
from the nominal value of d accorded to a particular pattern
and therefore the area of each unit cell is greater or less
than the value of s employed to convert from number to
area measure. This may arise from errors of construction,
especially if a piece of graph paper is used as the basis for
a square pattern without ascertaining whether it has the
correct dimensions, or it may arise from deformation of the
overlay in use and storage. Usually the overlay is reproduced
on plastic which is subject to dimensional changes with
variations in temperature, humidity, age and use. An
overlay which is used for area measurement will receive
much handling and may also require periodic cleaning. It is
unreasonable to expect that any kind of plastic could
withstand such treatment without undergoing some
dimensional changes. Hence we would expect to encounter
systematic errors if we always used the original value of d
in the conversion factor. The only adequate method of
eliminating this kind of systematic error is to make periodic
tests of the dimensions of the overlay, either by checking d
by linear measurement or by measuring a series of test
parcels of known areas and calculating the conversion factor
which best removes any bias from the errors of these test
measurements.

The Elimination of Gross Errors and the Speed of Counting
We have already noted in the Introduction that an

important disadvantage of point counting techniques is the
ease with which gross errors may be introduced. One of us
has already described some of the modern mechanical aids
to counting2 so that it is not necessary to repeat here in
detail the relative merits of each instrument. However we
cannot ignore their description entirely and since the speed
of execution of each count depends upon the kind of
equipment used, we may mention the two most important
instruments with reference to their operating speeds.
The more successful of the two instruments tried by us

is the British-made equipment called the Markounter. This
was originally intended for counting bacterial colonies and
for similar biological purposes but it can be used with any
kind of point overlay without modification. The instrument
comprises a pen holder containing an electrical switch which
is connected to a suitable counting mechanism. The holder
is fitted with a pen or pencil to mark the overlay and the
switch is operated by the pressure of the pen tip as it makes
the mark. The pen must be raised and lowered every time
one point is counted and because the existing pen holder is
rather heavy it is tiring to use for large counts. Because the
movements of the hand are discrete and repetitive move-
ments it is difficult to count at a speed greater than 3 points
per second. It is unlikely if many operators could maintain
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and the number of points which will temporarily cover the
circle will lie within the limits

If we consider the vertical columns of points for which
v>O, the number of points, l1b which permanently cover
the circle will lie within the limits

............ (6)-R<v<R+O.5

always lie either inside or outside the perimeter of the parcel
and that no overlap will occur.
If we move the overlay with respect to the parcel to be

measured, this movement may comprise a linear displace-
ment of the overlay, a rotation of it, or, more generally,
some combination of both movements. Each of these
movements will cause a different combination of points to
coincide with the parcel and our investigation is to endeavour
to discover how this happens. To do this it will be useful to
isolate the displacements from the rotations.
In order to study displacement without rotation we may

study the behaviour of a circle, of radius R, to be measured
by means of a square pattern of points. Because of the
symmetry of the circle about its centre it may be rotated
through any angle without influencing the number of points
counted.
Because of the symmetry of the overlay large displace-

ments will have no significance. Consequently we may
restrict our analysis to those displacements of the centre of
the circle as it is moved about one-quarter of the unit cell,
such as the square A of Figure 2. Any larger displacement
of the circle with respect to the overlay will merely repeat
one of the conditions which will arise as the centre is moved
within this small area, which we will term the central square.
We will show later that, in fact, we need only consider the
displacements within one-eighth part of the unit cell, that
is to say, within one-half of the central square divided by
one of its diagonals. However the symmetry upon which
this conclusion is based is not immediately obvious so we
will develop the arguments initially with reference to the
whole of the central square.
If the area of the circle is appreciably larger than the

area of the unit cell and if the centre of the circle is moved
about the central square, then some points on the overlay
will always coincide with the circle. Other points will lie
within the circle when the centre is in one position but will
lie outside it when the centre is elsewhere. We will distin-
guish these sets of points as either permanently covering or
temporarily covering the circle respectively.
In order to analyse the relationship between these two

sets it is convenient to introduce a system of coordinate
reference for the rows and columns of points on the overlay.
We introduce the (v, 11) system which is illustrated in

Figure 2 and note that the point (vo, l1o) refers to the bottom
left-hand corner of the central square.
It is not difficult to determine the limits within which the

value of v will lie for a circle of radius R.
Clearly

a counting speed faster than about 1t points per second for
prolonged measurements.
The more interesting, but less satisfactory, instrument is

the American MK Area Calculator. This also comprises an
electrical counting device, but the electrical impulse which
operates it is now made by the contact of a pencil with a
conductor on the overlay. The overlay comprises a family
of parallel equidistant copper strips in one direction and a
family of printed guide lines perpendicular to them. The
pencil is drawn along the guide lines and each time the
graphite point makes contact with a copper strip the count
is increased by one unit. Hence the procedure is exactly
equivalent to counting a square pattern of points. The
method possesses the operating advantage that the move-
ments of the pencil are continuous drawing motions rather
than discrete pointings. Therefore it is less tiring to use for
long periods. However it is no faster in use than the
Markounter and far less reliable. The major disadvantage
of the equipment results from an inability of the counting
mechanism to accept signals in quick succession. If the
pencil is moved too quickly not every contact made by the
pencil will be recorded on the counter and the total recorded
for the parcel will be lower than it ought to be. Practical
experience with the instrument suggests that it cannot be
used at speeds much faster than 2 contacts per second if
the risk of negative gross errors is to be avoided. The time
which is required to erase the pencil lines from the overlay
is an additional factor which reduces the effective operating
speed of the MK Area Calculator. This does not arise in
the use of the Markounter because it is possible to place a
disposable piece of transparent material over the overlay
which will be marked by the pen

The Analysis of Theoretical Accuracy
We propose to investigate the accuracy of area measure-

ment by counting in terms of the square pattern of points
because this is geometrically simpler to analyse than are
the others. However we believe that our conclusions are
substantially valid for any regular geometrical pattern and
may be applied to the other arrangements of points without
introducing any additional assumptions which might
significantly influence them.
We assume a square pattern of points which are separated

by a unit distance d2= 1. We will express all linear dimen-
sions in terms of d2 and all measurements of area in terms
of the area of the square cell with sides of equal unity which
is formed by four neighbouring points on the overlay.
The fundamental principle of the technique demands

that we place the overlay in a random position, that we
count those points which lie within the perimeter of the
parcel and exclude those points lying beyond it. The count
will therefore comprise discrete integer values because the
technique does not allow for fractional allocation of points
within the total. This implies that we must assume that
each point on the overlay satisfies the Euclidean definition
of possessing position but no magnitude. However we must
be able to see the points in order to count them so that they
must be drawn as dots or as the intersections of the families
of lines which generate the desired pattern. Similarly the
parcel boundary must have finite width for us to be able to
see it. In practice, therefore, we may expect that certain
points will overlap the perimeter of the parcel which is
being measured. Then the operator must make a conscious
and subjective decision whether he should count a point or
not. In the theoretical analysis we assume that a point will
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11 = +3
...... (12)

+2

+1

lli=+1. 0, -1
lli=+I,O, -1
lli=+I, °

-1
v= -1

Figure 2.

o

A

+1 +2 +3

In order to illustrate this numerically we will take the case
where R=2. In this instance the value of v will lie within
the range -2 to +2.5 (expression 6). In other words it
will take the integer values -1,0+1 and +2. Substituting
in expressions (7) and (8) for the positive values of v; in
expressions (9) and (10) for v=o and in (11)and (12) for
the negative values of v we find a series of values for the
number of points which permanently cover the circle, llh
and for the number of points which temporarily cover the
circle, 11;,11;.
There will be eight points which permanently cover the

circle, namely:
v=+1
v=O
v=-1

Where v=O, the expression for lli will have the form There will be seven points which temporarily cover the
circle, namely:

and the corresponding expressions for 11~and 11;will be

- VR2-=-(v-0.5)2+0.5 ~l1i~VR 2_( V+0.5)2
............ (11)

11;,11;=+1,0, -1
11;,11~=+2
11;,11;=+2
11;,11:=+2, -1

v=+2
v=+1
v=O
v=-1

If the total number of points is small, as in this example,
the analysis may be done graphically as follows. From each
of the points of the overlay which might be included in the
count we draw a short arc of radius R in the vicinity of the
central square. If this arc lies between the point on the over-
lay and the central square then that point will never coincide
with the circle wherever its centre is situated in the central
square. If the arc intersects the central square, then that
point will temporarily cover the circle as its centre occupies
different positions. If the arc lies beyond the central square
then that point will always coincide with the circle, or
permanently cover it, irrespective of the position of the
centre within the central square. In Figure 2 we have
indicated the points which permanently cover the circle by
dots and those points which temporarily cover the circle by
crosses. Consider, now, the point with coordinates v= +2,
11=+1. Clearly this point will lie within the circle whenever
the centre of the circle lies within the unshaded part of the
central square but it will not be counted if the centre of the
circle occupies a position within the shaded area. To
demonstrate the probability with which a particular count
of points may occur we ought to know the relative areas
of each of these portions of the central square. This can be
done quite easily graphically for a simple example such as
our case for R=2.
If we redraw the central square at a suitably enlarged

scale then we may calculate the points at which the various
arcs intersect the sides of the square and plot them in the
diagram illustrated by Figure 3. We regard the points of
intersection with the sides of the central square as the
cartesian coordinates 6.1 and 6.2 and we may find the
points of intersection of any arc with these axes from the
two expressions

............ (9)

............ (10)

12

VR2-0.52<11;<R+O.5 I
-R<l1;<- VR2_0.52+0.5J

o

"s:::-..
C"I

+
/I

;:. o·n::+2:v:: .

Where v<O we obtain for lli

Figure 3.

with the expressions for 11;and lli

and

25

D
ow

nl
oa

de
d 

by
 [U

N
SW

 L
ib

ra
ry

] a
t 0

8:
58

 1
7 

A
pr

il 
20

16
 



61=v±V -6~+21162+R2-112}

62=11±V -6I+2v61+R2-V2
............ (13)

In addition to the two expressions given in equation (13)
which define the points of intersection of any arc with the
two axes bounding the central square we may also calculate
the point at which each arc intersects the diagonal of the
square. Thus

The positive square root will be used for negative values
of v and 11and conversely. Having obtained the points of
intersection of each arc with the sides of the central square
and knowing the radius of the arc, we may now construct
it with the aid of railway curves. Then we may measure the
area of each figure which is composed of these arcs and the
sides of the central square by planimeter. In Figure 3 we
have indicated the number of points which would be
counted for any application of a square overlay with d2= 1
over a circle with radius R=2 if the centre of the circle
occupied that particular part of the central square. For
example, the portion situated in the upper right-hand
corner of the square is situated at a distance less than R
from four points which temporarily cover the circle. In
addition there are eight points which permanently cover
the circle so that when the centre of the circle lies in that
particular part of the central square the total count will be
12 points. For convenience of visual control, especially in
the analytical method to be described, it is useful to indicate
on each arc the coordinates of the point on the overlay to
which it refers. This has been done in Figure 3. We may
see in Figure 3 that the subdivision of the central square by
the arcs is symmetrical about an axis formed by the diagonal
of the square. This means that the entire analysis of
displacement may be carried out with reference to the
random location of the centre of the circle within the
triangular figure which represents one-eighth part of the
whole unit cell.
We have described the semi-graphical method of analysis

of the problem in detail because it permits easy visualisation
of the procedure. But the results of the semi-graphical
analysis may be prone to inaccuracy because of the minor
graphical errors and it is especially complicated to do for
R>2 which involves larger numbers of points and therefore
the analysis of more arcs. Besides we are concerned with
the theoretical aspects of this problem and hence it is
preferable to develop the analytical expressions for defining
the small area components which comprise the one half
central square.

............ (14)

We may also find the points of intersection of pairs of
arcs with one another. In order to do this we have used yet
another form of coordinate notation to define the (x, y)
system of Cartesian coordinates whose axes are parallel to
the axes of the (v, 1]) system. Then the coordinates of the
point of intersection of any two arcs may be determined
from the equations:

where ox and oy are the coordinates of the second point
from which an arc has been drawn with respect to the
coordinates of the first point (x, y).
Because of the coincidence of the two systems of co-

ordinates it is easy to convert from the (x,y) into (61) 62)'
by

............ (16)

The area of each part of the figure which is bounded on
one side by an arc can now be found from the expression:

x .
Sl= 2j (R2_X2)l.dx-(X2-X1)YO

Xl •••••••••••• (17)

y

•

•

•

•

•

•

)

X

The meaning of the various terms in this equation is
defined in Figure 4. After some transformation of this
equation, and introducing the convention that ~==sin 0, we
obtain the final equation for calculating the areas in a
useable form

R2
Sl=2[cOS (01+°2)' sin (02-01)+(02-01)] -(X2-X1)YO

.. (18)

If we denote by n that number of points covering the
circle as the centre of it is moved into different positions of
the central square and if we denote by Si the area of each
small figure as a fraction of the total area of the central
square, we may obtain the mathematical expectation, B(n)
of the number of points which might be counted

Figure 4.
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The relative error, f, may now be expressed by

If we determine the deviation, Vi) of an individual count
from the expectation

............ (21)

............ (20)

m
f=E(n)

and we will normally express this as a percentage value.
We have tested the behaviour of a series of circles with

radii, R=2, 3, 4 and 5 units, employing both the semi-
graphical and analytical approaches outlined above. The
results of these tests are given in Table 1.

then we may obtain an expression for the mean square error
of measurement of the area of a circle by a square point
pattern as

TABLE 1
Summary of the results of the analysis of the displacement

of circles with different radii with respect to a square point
pattern.

R=2 R=3 R=4 R=5
n s n s n s n s
10 0.010 26 0.056 46 0.001 75 0.034
11 0.178 27 0.165 47 0.035 76 0.032
12 0.220 28 0.372 48 0.061 77 0.129
13 0.417 29 0.318 49 0.136 78 0.261
14 0.175 30 0.061 50 0.301 79 0.311

31 0.008 51 0.281 80 0.176
32 0.020 52 0.185 81 0.057

We see from Table 1 that as the radius of the circle is
increased and therefore as n increases, the distribution of n,
and therefore the deviations from E(n) trend towards a
normal distribution. For R=5 we have a distribution in
which the skewness is only -0.456 and the excess is 0.180
which indicates a fairly good approximation to the normal
distribution.
We turn now to the study of the influence of rotation of

the overlay with respect to the parcel being measured. We
must introduce two additional concepts in order to make
this analysis. In the first place we must revise our definition
of the unit cell to mean the square figure with side length
d2 which has a particular point on the overlay situated at
the centre of it. We assume that such a cell is located at the
edge of the parcel and may be intersected in any position
and in any direction by its perimeter. We suppose, more-
over, that the size of the unit cell is small enough for us to
assume that the portion of the perimeter within the unit
cell may be regarded as a straight line. Then the unit cell
will be truncated by a straight line and will be divided into
one part which is greater than one half of its area and
another part which is less than one half of the area.
Although an arbitrary straight line can intersect the unit

............ (22)

al=coC1 (I-x) 1

a2:coc1 ~~2X)f
a3-1t-cot x

If the angle lies between the limits a2 -a3, then

2

The mean square value of the area OJ for a constant
value of x may be obtained from the formula

If the angle a lies between the limits al -a2, then

If the angle a lies between the limits Q3 and 1t, then

These angles are illustrated in Figure 5.
Ifwe denote by (j) the area which is cut off from the unit

cell.by the straight line, the value of it may be found from
a series of equations, which depend upon the size of a.
Thus, if the line makes an angle which lies within the

limits O-a!, then

cell in any position and at any angle, we can, by the sym-
metry of the figure, confine our attention to only one side
of the cell, as indicated in Figure 5. The coordinate, x, of
the point of intersection along the abscissa will have equal
probability within the limits from x=O to x= 1; the angle a
will also have equal probability within the limits a=O to
a=1t. For some arbitrary point with abscissa x, the angle a
can occupy one of three positions which we can define
immediately. These are

Figure 5.

78.54
1.34
1.7%

50.27
1.34
2.7%

28.27
1.16
4.1%

S=E(n) 12.57
m 1.01
f 8.0%
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If a lies between al and a3, then

Substituting in equation (23) the different values for Wi
given above and integrating this expression we finally arrive
at a solution.

and if a lies between a3 and 1t,

/3=X. sec a

~JU-4(I-x)2-(I-x)4] arc cot (l-x)+ }+
+41t l (1-4x2-x4) arc cot x

1
+ -(1-2x) arc cot (l-2x)+

1t

The mean square value for / for a constant value of x may
now be defined as:

2 al• a3 • 1t •

/ =~ J /r·da+ \ /~.da+ \ /i·da
_0 al' a3' _

1{-W-X) loge [1+(I-x)2]+! loge U+(1-2x)2]
+n x)

-i loge (1+x2) J

............ (24)

............ (26)

If we substitute here for h, integrate the resulting
expression and then simplify the result we obtain

2
The minimum value of ro will correspond to the values

of x=o and x= 1. In both of these cases
or

_2 1
w= - (2-1tj2)

41t
/=0.7979 ............ (27)

Q=0.2127

=0.2436

We can see that / varies within the limits 0 ~/ ~ v'2 and tha t
2

the mean square value / is wholly independent of x. Thus a
displacement of the pattern of points has no influence upon
the mean square value of an arbitrary straight line which
intersects the pattern at any arbitrary angle.
We have already assumed that the straight line is the

representation of the parcel perimeter within any given
cell. Thus we substitute for the true perimeter of the parcel
a series of short rectilinear elements, one lying in each cell

Figure 6.

m=0.1848or

2
Substituting here the value of w from (24) and after some
rearrangement of the expression we finally obtain

The maximum value of m will occur when x=O.5. In
this case,

("'\2 lr~
~~= Jw.dx

o

We must now find the value of OJfor variation in x between
o and 1. Denoting this by Q we will have

............ (25)

We must now determine the mean square value of the
length of the straight line element, /, enclosed within the
unit cell which we assume represents part of the perimeter
of the parcel. This is obviously dependent upon the values
of x and a and, as before, the expression will vary according
to the size of a. Thus, if a lies between 0 and al we use the
expression
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of the point pattern. The smaller is the size of the unit cell
compared with the area of the parcel, the less will be the
relative error in measurement which arises from this
assumption.
In each of the cells which coincide with the parcel

perimeter there will occur either a positive or negative error
of measurement according to the position where the
rectilinear element intersects the unit cell. As may be seen
in Figure 6, the shaded part of each cell which lies outside
the perimeter of the parcel will give rise to positive errors
in measurement; the shaded parts which lie inside the
perimeter of the parcel will represent negative errors. The
maximum possible error will clearly be equal to ±0.5 s
(where s is the area of the unit cell). The mean square error
will equal Q which has already been defined by equation
(25) as having the constant value of 0.2127. For uniformity
of symbolisation in the final expressions, we put
Q=k1=0.2127.
The standard error of the whole parcel will be

o o
K=4
3

............ (28)

where np is the total number of cells which intersect the
perimeter of the parcel. This quantity may be determined
from

............ (30)

K=2/1+/2
3

~
ry

/
K= 5lT. __
3 3 1!3~3---r-

Figure 7.

............ (29)

............ (31)

The true perimeter of the parcel may be related to the
area of the figure enclosed by all the straight line elements
by the expression

where L is the cumulative length of all the small rectilinear
elements l;which we have substituted for the true perimeter
of the parcel. The coefficient k2 may be expressed as

which, from (27) is constantly equal to 1.2533.

and the coefficient k3 depends upon the shape of the parcel.
We have evaluated this coefficient for the series of simple
geometrical figures illustrated in Figure 7 and the resulting
values for k3 are tabulated below (Table 2).
If we now combine the three expressions (29), (30) and

(31) we may rewrite equation (28) in the form

use of the relative value of the mean square error. Thus we
may rewrite (32) in the form

............ (33)

............ (32) If we convert this to logarithms, then we may combine the
three coefficients as a single term

and the relative error may be expressed as a percentage in
the form

The value of the coefficient K will vary only with varia-
tions in k3 which we have seen represents some measure of
parcel shape. For the series of simple geometrical figures
illustrated in Figure 7 the values for k3 and hence of K will
be as follows:

so that the standard error of area measurement by counting
points is proportional to the fourth root of the area of the
parcel. This conclusion is to be compared with the relation-
ship of the standard error of measurement of area by
planimeter which many writers8, 9, 10 have shown to be
proportional to the square root of the area. K6ppke5
has argued that the mean square error of area measurement
by counting points is also proportional to the square root
of the area but we cannot agree with this conclusion.
In order to make practical use of equation (32) and, in

particular, to evaluate the density of points needed to
measure area to a given standard of accuracy, we will make

logf%=K-0.75 log S

............ (34)

............ (35)
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/2
2.60%
2.43
2.29
2.17
2.05
1.96
1.87
1.80
1.72
1.66

S
5
10
15
20
25
30
35
40
45
50

h h S h
13.42% 15.66% 55 2.23%
7.98 9.31 60 2.08
5.89 6.87 65 1.96
4.74 5.53 70 1.86
4.01 4.68 75 1.76
3.50 4.08 80 1.68
3.12 3.64 85 1.60
2.82 3.29 90 1.54
2.58 3.01 95 1.47
2.39 2.79 100 1.42
These values are also plotted in Figure 8

Clearly the equations (33) and (35), Table 3 and Figure 8
all demonstrate the well known fact that for a given error of
measurement, e, the relative error,!, for a small parcel will
be greater than the corresponding value for ! for a large
parcel because e represents a proportionately larger fraction
of the smaller parcel. However it can also be seen from
Figure 8 that as area increases the curves converge. That
is to say, the differences between the relative errors of
measurement for differently shaped parcels become smaller
as the size of the parcels is increased. For parcels in which
the count approaches 100 the difference between the relative
errors of the two shapes of parcel studied above becomes
less than 0.24%.
In order to test this theory for more elongated, less

compact, parcels the values for!% have been calculated for
a series of rectangles possessing the shorter pair of sides
equal to unity and the longer pair of sides equal to 2, 5, 10,

Figure k3 K
Circle 3.5449 1.652
Square 4.0000 1.678
Rectangle with ratio of sides 1:2 4.2427 1.691
Equilateral triangle 4.5586 1.706
Lune formed by two circular
arcs with ratio of radii 1:2 4.4730 1.716

Isosceles right-angled triangle 4.8284 1.719

TABLE 2
The influence of parcel shape upon the coefficients k3

and K for simple geometrical figures.

TABLE 3
Values for relative error of measurement (f%) for different

sizes of parcel, S, employing the values of K determined for
the circle (fl) and for the isosceles right-angled triangle (f2)'

From this table we can see that the value of K varies only
slowly with shape. We have calculated equation (35) for
different values of S and for the two limiting values of K,
namely those for the circle and for the right-angled isosceles
triangle. These are tabulated in Table 3. Note that the
assumption that the parcel perimeter has been replaced by
a series of short rectilinear elements will apply only to the
circle and to the lune in this particular series of geometrical
figures.

15
Upper curve, Isosceles right-angled triangle, log f% = 1.719-0.75 log S
Lower curve, Circle, log f% = 1.652-0.75 log S

10

f%

5

10 20 30 40

Isosceles right-
angled triangle

;>0

" ;>0
./>. II Circle

01

50 60 70 80 90 100
5

Figure 8.
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Value
error

15

10

f%

5

Figure 9.

of f% obtained from standard
for 5 measurements of parcels

on the Pattern Map by M K Area
Calculator with 64/in grid.

A
A A

!'. A
A A

• A .. A
A A

A A
A

10 20 30 40 50 60 70 80 90 100 120 130 140 150 160

5

25, 75, 100, 150 and 200 units. The extremely elongated
rectangles might be interpreted as corresponding to the sort
of linear features, such as rivers, roads or railways the areas
of which might be required for land use or land classification
purposes. The results of these calculations are presented in
Table 4.

TABLE 4

Values for the relative error (f%) of measurement of the
areas of rectangles with different ratios between the lengths
of the sides.

TABLE 5
The comparison between the relative errors (f%) obtained

from the analysis of the coincidence of overlay points (fo)
for circles of different radii and the relative errors of area
measurement calculated from equation (35) (ft).

R S m fo ft fo-ft
2 12.57 1.01 8.0% 6.7% +1.3%
3 28.87 1.16 4.1 3.7 +0.4
4 50.27 1.34 2.7 2.4 +0.3
5 78.54 1.34 1.7 1.7 0.0

Area(S) f% f% f% f% f% f% f% f%
5 14.7 16.5 18.8 23.0 29.8 32.0 35.4 38.0
10 8.7 9.8 11.2 13.7 17.7 19.0 21.0 22.6
25 4.4 4.9 5.6 6.9 8.9 9.6 10.6 11.4
50 2.6 2.9 3.3 4.1 5.3 5.7 6.3 6.7
75 1.9 2.2 2.5 3.0 3.9 4.2 4.6 5.0
100 1.5 1.7 2.0 2.4 3.2 3.4 3.7 4.0

Comparison of these figures with the corresponding
values of Table 3 indicates that the rectangle with side
lengths 5 units X 1 unit gives rise to a curve which lies close
to that for the right-angled isosceles triangle. Not surpris-
ingly the more elongated figures indicate larger relative
errors but the important conclusion is that the curves still
converge to an overall range of 2.5% for S equals 100.
It is also interesting to compare the values obtained from

equation (35) for the four circles with different radii which
were studied earlier (see Table I) with reference to the
frequency of different possible counts. The comparison
between the two sets of relative errors is given in Table 5.

Ratio 1:2 1:5 1:10 1:25 1:751:1001:1501:200 The expression which will best fit the values of fo is
logf%=1.652-0.75 log S

The points corresponding to fo for the mean values for n
derived from Table 1 are also indicated in Figure 8.
The discrepancy between fo and ft recorded in the last

column of Table 4 is interpreted by us as a small systematic
error which results from our assumption that the perimeter
in each cell is represented by a straight line, whereas this is
demonstrably a false assumption when we measure the
areas of circles by this method. However we may see in
Table 5 and Figure 8 that the systematic error decreases
rapidly as the area of the parcel increases and, in practice,
if S is represented by a count of more than 50 points it can
be ignored.

Experimental Tests
It is now desirable to see if the errors obtained in practical

measurement correspond in size to those derived theoretic-
ally.
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The values for f obtained for all parcels greater then
3.999 cm2 are shown individually in Figure 9. The curve in

-3.1
-1.5
-2.0
-9.0
+3.0
-3.0
-3.5

Differ-

17.5
17.2
15.1
14.0
12.5
12.4
12.2

14.4
15.7
13.1
5.0
15.5
9.4
8.7

1.643
1.923
2.074
0.894
3.493
2.191
2.074

11.43
12.21
15.88
17.92
22.46
23.37
23.95

r
s
t
o
p

m
I

TABLE 7
Relative errors of measurement of extremely elongated

parcels exemplified by the roads on the Pattern Map.
Measurements made by M.K. Area Calculator.

SOl Correspond-
enaA 0 Of + +1 tt rea 109 ratio 0 m Jo Jt

of
e
r~~d (count) sides for (count) ('Yo) ('Yo) (%)

rectangle
1:108
1:121
1:158
1:170
1:215
1:232
1:238

Table 7 provides some indication of the relative errors
which are likely to arise in the measurement of extremely
elongated parcels, exemplified on the Pattern Map by nine
'roads' which separate the ten blocks. These roads have
been regarded as corresponding to extremely elongated
rectangles for the purpose of determining theoretical values
forf·

Figure 9 is derived from the mean values of f given in
Table 6 of the samples taken from the four smallest size
classes and corresponds to the expression

logf('Yo)=1.771-0.75 log S

(Note that two roads, serials nand q, are missing from
this table. These were too long to be measured with the
M.K. grid as single parcels).
Both Tables 6 and 7 indicate that there is some measure

of agreement between theory and practice. In both of the
tables a positive difference indicates that the results obtained
by the M.K. Area Calculator were less precise than the
theory suggests; a negative difference indicates that the
actual results are somewhat better than one might expect
from our theoretical consideration of the problem. Table 7
indicates some fairly large fluctuations but this is to be
expected from the very small sample which we have been
able to study. The consistently positive difference in Table 6
really depends upon what numerical value is apportioned to
the term K in equation (35) in order to calculate the
theoretical value, ft, corresponding to the mean area of
each class. The figures tabulated in Table 6 were calculated
from a mean value of K= 1.719 derived from Table 2, but
a more realistic value, K= 1.771 has been found in fitting
the curve shown in Figure 9 to the observed data.

Comparison of the Theoretical Accuracy of Counting with
other Methods of Area Measurement
The analysis thus far has been made with reference to

unit distance between points, d, and of unit area, s, of each
square cell. Even the examination of the experimental data
has been made with reference to the number of points
counted rather than their metric equivalents derived from
equation (1). Generally, however, the area of a parcel shown
on a map will be required in units of measurement which
have some practical significance. Moreover if we wish to
compare these results with the equivalent studies made for
other techniques of area measurement, we must use a
common standard of measurement.
In order to express the relative error, f, with respect to

Differ- Size
ence of
('Yo) Sample
+2.0 30
+0.6 30
+0.5 15
+0.5 15

It
('Yo)

13.9
7.1
4.7
3.7

10
('Yo)

15.9
7.7
5.5
4.2

0.943
1.205
1.476
1.541

TABLE 6
Relative errors of measurement of area on the Pattern

Map obtained with M.K. Area Calculator.
Mean Class marea S range
(count) (cm2) (count)

5.08 0-0.999
14.31 1-1.999
24.57 2-2.999
34.79 3-3.999

We have therefore analysed the results of 3,340 measure-
ments made on the Pattern Map devised and constructed by
C. J. McKayll specifically for the purpose of evaluating
different instruments and techniques for area measurement.
The parcels on the Pattern Map have been constructed

geometrically to provide an independent measure of their
areas and most of them are originally based upon simple
figures with rectilinear sides. Although groups of these
simple figures have been combined in order to make parcels
of irregular shape, the rectilinear outline has been retained.
Thus measurements made on the Pattern Map do not
represent a test for any errors arising from our assumptions
about the shape of the perimeter within each unit cell.
The greatest frequency of parcels on the Pattern Map is

for the smallest size class (0-0.999 cm2) and the distribution
of parcels by size yields a characteristically L-shaped
pattern. This corresponds to the size distribution which is
often encountered on maps and plans, certainly of Western
Europe, but it is inconvenient in a study of the relative
errors of measurement. In order to create some balance
between the paucity of measurements for larger parcels and
the considerable amount of data available for small parcels,
we have selected a random sample from the measurements
available for the smaller sizes classes and we have used all
the measurements for parcels larger than 3.999 cm2.
The measurements were made with the M.K. Area

Calculator using the 6\ inch grid. Each parcel was measured
by five random applications of the overlay. The sampling
parameter which most closely corresponds to the theoretical
mean square error, me, is the standard error of the single
observation. This is expressed in units of the number of
points counted in the column headed m in Table 6.
The tests made with the M.K. Area Calculator have

already been described2 where the unreliability of this
instrument as a counting device has been emphasised. The
demonstration that measurements made with the M.K.
Area Calculator are commonly prone to negative gross errors
was largely done by making a comparison of the measure-
ments made in the bigger units, or blocks, on the Pattern
Map. These blocks vary in size between approximately
100 cm2 and 300 cm2, corresponding to counts within the
range 1,000-3,500 points. The difference between the
measurements of each whole block with an area derived
from the sum of the parcels contained within that block
demonstrates that gross errors have often occurred in
making meas ements with this order of magnitude.
Although gross errors certainly occurred in measuring the
areas ofindividual parcels these are much less common and
the doubtful pareels have been eliminated from the present
analysis.
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area measured in square centimetres, equation (35) must be
rewritten as

90 100

-
8020 2010

o

f%

Figure 11.

of the different techniques and instruments suggest an
average counting speed of about 1.5 points per second. This
includes the time needed to read and book the results at
the approximate rate of one entry per count of 25 points.
Admittedly this rate can be improved upon in making
measurements of small parcels because the hand which
marks the points counted does not have to be moved from
place to place, but against this must be offset the decrease
in rate which results when a large number of points have
to be counted. Although we appreciate that the counting
rate may vary significantly between individual operators,
we believe that any prolonged series of measurements would
yield an average counting speed not much different from
the 1.5 points per second which we have adopted.
A measurement by planimeter depends upon making

two readings of the vernier each time the instrument is
traced round a parcel. This, combined with booking the
two measurements comprises about 15 seconds and this is
more or less constant for any size of parcel. The actual
tracing time depends, again, upon the skill of the operator
and also upon the complexity of the outline, but Baer's
estimate of 0.2 cm per second12 seems to be realistic. For
planimeter measurements we have, therefore, assumed
square parcels of different area to determine the length of
perimeter and we have used the two criteria to estimate the
measurement time.
In Figure 12 we have obtained seven curves which equate

precision, m, with time, T, for Zill's three planimeter
equations and four different sizes of point overlay. The
broken lines on this figure locate parcel sizes of 20, 50 and
100 cm 2 for the counting measurements and of sizes 5, 20,
50, 100,200 and 300 cm2 for planimeter measurements.
We can see, immediately, the difference in character of

these sets of broken lines. Those calculated for the three
planimeters are vertical, indicating that the execution time
is the same for each kind of instrument. The broken lines
linking the curves based on counting illustrates that as the
separation between points is reduced so the number to be
counted rises in geometrical progression, and thus the time
needed to make the measurements increases in a similar
fashion.
The concentration of all the planimeter curves close to

the origin of the axes indicates quite clearly the superiority
of these instruments both with respect to precision and to

t =0·4

t= 0·4

t= 0·8

100

t= 1·0

50
Area(cm2)

CD Polar planimeter(Zilil
@ Polardisc planimetedZill)
@ Roller disc planimeter (ZiIIJ

50

100-

150-

Figure 10.

3log/(%)=K+2 log t-0.75 log S'

............ (36)

Comparative Speeds 0/ Measurement
We must now investigate the time which is required in

order to make area measurements by the different methods
and compare this with the sort of precision of measurement
which may be attained. It has already been noted that tests

where t is the side length of the unit cell in centimetres and
the area of the parcel, S', is expressed in square centi-
metres. Figure 10 illustrates the relationship between / and
Sf for a series of different sizes of square point pattern.
These values have been calculated from equation (36) using
for K the mean value of 1.719.
Most of the work on the accuracy of area measurement

concerns the evaluation of different kinds of planimeter. As
an example of the kind of precision found in the three basic
types of instrument we have reproduced, in Figure 11, the
three curves deduced by Zill9 for the ordinary compensat-
ing polar planimeter, for the polar disc planimeter and for
the rolling disc planimeter. We compare these with the
corresponding curves deduced from equation (36) for the
theoretical precision of square grids where t=0.2, 0.4, 0.6
and 0.8 cm. This indicates that the precision of point
counting with a square grid for t=0.2 cm compares well
with Zill's curve for the polar planimeter but no counting
method can compare in precision with the more sophisti-
cated polar disc and rolling disc instruments.
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Figure 12.

500
T(secs) 1000 1500

The individual point patterns might be reproduced on
different sheets of plastic, or they might be superimposed
one upon the other using different colours to separate one
from another and avoid confusion in counting. Then the
operator makes a rough guess at the area of a parcel and
then selects the most suitable point separation.
Since no count should differ from 100, we can estimate

that the single measurement of any parcel will be slightly
more than one minute. The second advantage possessed by
point counting is that this is a more convenient technique
for measuring the areas of separate parcels when we only
need to know their total area. This may be exemplified by
the requirement to measure the total area of woodland
shown on a map and is clearly a common problem in many
kinds of land use and land classification studies. The
counting procedure is organised so that each parcel to be
measured is counted during each application of the overlay.
Corresponding measurements by planimeter would entail
setting up the instrument separately for each parcel in turn.
In this context we should note that an increase in the

economy of measurement time. It is only the small parcels
with area less than about 3 cm2 which can be measured
more quickly and with equivalent precision by counting
with a 0.2 cm or finer grid; all larger parcels are more
efficientlymeasured by planimeter.

Conclusions
If this is so, what justification is there in using point

counting techniques in preference to planimeter measure-
ments?
There are, we believe, two reasons why area measure-

ment by these methods can still be regarded as economic
and adequate. First we must bear in mind that the measure
of precision, characterised by the use of the mean square
error, m, in square millimetres is unrelated to parcel size.
We emphasise the importance of using the relative error in
any consideration of area measurement because it is much
more useful from a practical point of view. For most
purposes it is sufficient to demonstrate that the relative
error of a series of measurements does not exceed some
criterion such as 1% or 1.5%. We have already shown that
this order of accuracy is related to the number of points
counted. For example, if we specifythat! should not exceed
1.5% then the minimum count of points in a parcel should
be about 100.Since this is unrelated to the separation of the
points on the overlay we suggest that we can discard the
conventionalnotion of using the sameoverlayfor all parcels,
irrespective of their size, but we should employ several.We
might use the following limiting values of t for different
sizes of parcel:
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Less than

Greater than

TABLE 8

S
4 cm2
16
36
64
100

t

0.2 cm
0.4
0.6
0.8
1.0
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1
log fn(%)=logf(%)+4 log n (37)

The errors which will arise in this procedure approximate
to the binomial distribution. Thus we may also determine
the relative error from the expression

number of parcels measured will result in some loss of
accuracy. An n-fold increase in the number of parcels
measured results in an increase in the relative error which

is proportional to Vn. Thus, if we denote the relative error
in measuring and area which is contained in n separate
parcels by fm

where n is the number of points which coincide with the
parcels to be measured and p is the probability that any
point lies within these parcels. This is equivalent to the
ratio of the sum of the areas of the parcels measured to the
area of the whole map or region.
The relative errors calculated from equation (38) will be

greater than are the corresponding errors of measurement
of the single parcel having the same area. This is accounted
for by the increase in the total length of the perimeters of
n parcels compared with the length of the perimeter of a
single parcel having the same area.

Metrication of Ordnance
Survey Maps
The first Ordnance Survey maps to be based completely

on metric measurements will be published in the autumn
of this year. The changeover will be gradual and at this
stage will be limited to the large-scale O.S. maps, including
the six-inch-to-the-mile series. Metrication of the popular
one-inch and smaller scale maps is still under study.
For many years the Ordnance Survey has used a metric

grid on its maps; the sizes of the map sheets themselves
have been based on this grid and correspond to metric
dimensions on the ground. The scales of most of the maps
series are already in decimal form, e.g. 1:2500, 1:25000);
the only exceptions being the one-inch and the six-inch
maps.
The changes being introduced are as follows:-

1:1250 and 1:2500 Scales
On new and revised sheets and heights of bench marks

will be shown to two decimal places of a metre and of spot
heights to one decimal place. The mereings of administra-
tive boundaries will be shown in metres to two decimal
places. On the 1:2500 maps areas of parcels of land will be
given in hectares to three decimal places and also in acres
as hitherto. The first metric maps at these scales will appear
in October 1969 but it will be many years before alII :1250
and 1:2500 maps (there are some 150000 of them) are
converted to metric form.

............ (38)f=C;/Y
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Six-inch and 1:25000 Scales
The six-inch (1 :10 560) scale will be replaced by the

1:10 000 with metric contours. The contour interval will be
10 metres in the more mountainous areas and 5 metres in
the remainder of the country. The first sheets atthe 1 :10000
scale will be published in December 1969, but it will be
many years before the country is covered with a homo-
geneous series at this scale. When, in about 1985, the present
Provisional series has been replaced over the whole country
by Regular sheets at the 1:10560 or 1:10 000 scale, the map
will still exist in three forms:-
(1) 1:10 000 scale with metric contours at 5 metre or

10 metre interval. (68 per cent).
(2) 1:10 000 scale with 25 feet contours labelled with the

equivalent metric values. (22 per cent).
(3) 1:10560 with 25 feet contours. (10 per cent).
These will eventually be converted tJ 1: 10 000, but in

order to minimise inconvenience while this situation
continues the Ordnance Survey will supply reductions of
the 1:10 000 map to 1:10 560 and enlargements of the
1:10 560 to 1: 10 000 for limited areas on request. These
reductions or enlargements will be in a single colour.
Publication of the 1:25 000 map with metric contours

will follow the 1: 10 000. The contour interval will be
consistent over the whole of the 1:25 000 sheet.

Bench Mark Lists
The heights of bench marks will be given in metres and

in feet in bench mark lists.

Identification of Metric Sheets
All metric sheets will carry the British Standards Institu-

tion metric symbol and also a prominent marginal note
'Heights in Metres'.
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