85 years of Nielsen theory: Coincidence Points

P. Christopher Staecker

Fairfield University, Fairfield CT
Nielsen Theory and Related Topics 2013

At this point, there are many types of Nielsen theories.

At this point, there are many types of Nielsen theories.

Start with $f(x)=x$, and generalize to other types of things.

At this point, there are many types of Nielsen theories.

Start with $f(x)=x$, and generalize to other types of things.

We did $f^{n}(x)=x$, which is a very well-developed theory.

At this point, there are many types of Nielsen theories.

Start with $f(x)=x$, and generalize to other types of things.

We did $f^{n}(x)=x$, which is a very well-developed theory.

Today we'll do $f(x)=g(x)$ for two different maps.

Some other Nielsen theories briefly.

Some other Nielsen theories briefly.

What they have in common generally is some idea of "fixed point classes", and "essentiality".

Some other Nielsen theories briefly.

What they have in common generally is some idea of "fixed point classes", and "essentiality".

Roots: $f: X \rightarrow Y$, study points with $f(x)=a$ for some $a \in Y$.

Some other Nielsen theories briefly.

What they have in common generally is some idea of "fixed point classes", and "essentiality".

Roots: $f: X \rightarrow Y$, study points with $f(x)=a$ for some $a \in Y$.

Nielsen root theory is very old, starting in a sense with the Hopf degree.

Some other Nielsen theories briefly.

What they have in common generally is some idea of "fixed point classes", and "essentiality".

Roots: $f: X \rightarrow Y$, study points with $f(x)=a$ for some $a \in Y$.

Nielsen root theory is very old, starting in a sense with the Hopf degree.

Could easily do another whole day on root theory.

Some other Nielsen theories briefly.

What they have in common generally is some idea of "fixed point classes", and "essentiality".

Roots: $f: X \rightarrow Y$, study points with $f(x)=a$ for some $a \in Y$.

Nielsen root theory is very old, starting in a sense with the Hopf degree.

Could easily do another whole day on root theory. (Brown's talk Saturday)

Relative Nielsen theory:

Relative Nielsen theory: Done first by Schirmer, 1986.

Relative Nielsen theory: Done first by Schirmer, 1986.

Take $A \subset X$, and a map $f:(X, A) \rightarrow(X, A)$, so $f: X \rightarrow X$ and $f(A) \subset A$.

Relative Nielsen theory: Done first by Schirmer, 1986.

Take $A \subset X$, and a map $f:(X, A) \rightarrow(X, A)$, so $f: X \rightarrow X$ and $f(A) \subset A$.

Then $N(f ; X, A)$ is a lower bound for the number of fixed points of homotopic maps of pairs.
n-valued maps:
n-valued maps: Schirmer, 1984.
n-valued maps: Schirmer, 1984.

Described in Daciberg's talk, Brown will do coincidences and roots.
n-valued maps: Schirmer, 1984.

Described in Daciberg's talk, Brown will do coincidences and roots.

The image of a point is always a set of n distinct images.
n-valued maps: Schirmer, 1984.

Described in Daciberg's talk, Brown will do coincidences and roots.

The image of a point is always a set of n distinct images.

A fixed point is some $x \in f(x)$.
n-valued maps: Schirmer, 1984.

Described in Daciberg's talk, Brown will do coincidences and roots.

The image of a point is always a set of n distinct images.

A fixed point is some $x \in f(x)$.

Also a general theory for multivalued maps:
n-valued maps: Schirmer, 1984.

Described in Daciberg's talk, Brown will do coincidences and roots.

The image of a point is always a set of n distinct images.

A fixed point is some $x \in f(x)$.

Also a general theory for multivalued maps: begun by Andres, Górniewicz, Jezierski, 2000.
n-valued maps: Schirmer, 1984.

Described in Daciberg's talk, Brown will do coincidences and roots.

The image of a point is always a set of n distinct images.

A fixed point is some $x \in f(x)$.

Also a general theory for multivalued maps: begun by Andres, Górniewicz, Jezierski, 2000.

No regularity assumptions about the number of images.

Equivariant maps:

Equivariant maps: Done first by Wong, 1991.

Equivariant maps: Done first by Wong, 1991.

Let X be a space with an action by a Lie group G

Equivariant maps: Done first by Wong, 1991.

Let X be a space with an action by a Lie group G, and let f be G-invariant.

Equivariant maps: Done first by Wong, 1991.

Let X be a space with an action by a Lie group G, and let f be G-invariant.

How does the fixed point set behave under homotopies through G-maps?

Equivariant maps: Done first by Wong, 1991.

Let X be a space with an action by a Lie group G, and let f be G-invariant.

How does the fixed point set behave under homotopies through G-maps?
(Better's talk)

Borsuk-Ulam points by Cotrim \& Vendruscolo

Borsuk-Ulam points by Cotrim \& Vendruscolo

And several others.

Borsuk-Ulam points by Cotrim \& Vendruscolo

And several others.

Try your own!

Borsuk-Ulam points by Cotrim \& Vendruscolo

And several others.

Try your own! But ask around first.

Coincidence theory: $f(x)=g(x)$.

Coincidence theory: $f(x)=g(x)$.

First thing to notice is that this question does not only apply to selfmaps.

Coincidence theory: $f(x)=g(x)$.

First thing to notice is that this question does not only apply to selfmaps.

We generally take $f: X \rightarrow Y$ where X and Y are different.

Coincidence theory: $f(x)=g(x)$.

First thing to notice is that this question does not only apply to selfmaps.

We generally take $f: X \rightarrow Y$ where X and Y are different.

Like in fixed point theory, we want an invariant to measure:

$$
M C(f, g)=\min \left\{\# \operatorname{Coin}\left(f^{\prime}, g^{\prime}\right) \mid f^{\prime} \simeq f, g^{\prime} \simeq g\right\}
$$

Lefschetz's original work in 1920s actually includes this setting.

Lefschetz's original work in 1920s actually includes this setting.

Lefschetz assumes X and Y are orientable differential manifolds of the same dimension n.

Lefschetz's original work in 1920s actually includes this setting.

Lefschetz assumes X and Y are orientable differential manifolds of the same dimension n.

Then $L(f, g)$ is the alternating sum of the traces of the composition:

$$
H_{q}(X) \xrightarrow{f_{* q}} H_{q}(Y) \xrightarrow{D_{Y}} H^{n-q}(Y) \xrightarrow{g^{* n-q}} H^{n-q}(X) \xrightarrow{D_{X}^{-1}} H_{q}(X)
$$

where D_{X} and D_{Y} are the Poincaré duality isomorphisms.

Lefschetz's original work in 1920s actually includes this setting.

Lefschetz assumes X and Y are orientable differential manifolds of the same dimension n.

Then $L(f, g)$ is the alternating sum of the traces of the composition:

$$
H_{q}(X) \xrightarrow{f_{* q}} H_{q}(Y) \xrightarrow{D_{Y}} H^{n-q}(Y) \xrightarrow{g^{* n-q}} H^{n-q}(X) \xrightarrow{D_{X}^{-1}} H_{q}(X)
$$

where D_{X} and D_{Y} are the Poincaré duality isomorphisms.

This is homotopy invariant, and $L(f, g) \neq 0 \Longrightarrow \operatorname{Coin}(f, g) \neq \emptyset$.

$$
H_{q}(X) \xrightarrow{f_{* q}} H_{q}(Y) \xrightarrow{D_{Y}} H^{n-q}(Y) \xrightarrow{g^{* n-q}} H^{n-q}(X) \xrightarrow{D_{X}^{-1}} H_{q}(X)
$$

This will not work without orientability.

$$
H_{q}(X) \xrightarrow{f_{x q}} H_{q}(Y) \xrightarrow{D_{Y}} H^{n-q}(Y) \xrightarrow{g^{* n-q}} H^{n-q}(X) \xrightarrow{D_{X}^{-1}} H_{q}(X)
$$

This will not work without orientability.

This really won't work if the dimensions of X and Y are different.

$$
H_{q}(X) \xrightarrow{f_{x}} H_{q}(Y) \xrightarrow{D_{r}} H^{n-q}(Y) \xrightarrow{g^{* n-q}} H^{n-q}(X) \xrightarrow{D_{x}^{-1}} H_{q}(X)
$$

This will not work without orientability.

This really won't work if the dimensions of X and Y are different.

This really really won't work if X and Y aren't manifolds.

$$
H_{q}(X) \xrightarrow{f_{* q}} H_{q}(Y) \xrightarrow{D_{r}} H^{n-q}(Y) \xrightarrow{g^{* n-q}} H^{n-q}(X) \xrightarrow{D_{x}^{-1}} H_{q}(X)
$$

This will not work without orientability.

This really won't work if the dimensions of X and Y are different.

This really really won't work if X and Y aren't manifolds.

So we'll focus on pairs of orientable manifolds, same dimension.

For a Nielsen coincidence theory, we need coincidence classes, and a coincidence index.

For a Nielsen coincidence theory, we need coincidence classes, and a coincidence index.

This was first done by Schirmer, 1955.

For a Nielsen coincidence theory, we need coincidence classes, and a coincidence index.

This was first done by Schirmer, 1955.

For the classes, they can be defined as coincidence sets of liftings like we did for fixed points.

For a Nielsen coincidence theory, we need coincidence classes, and a coincidence index.

This was first done by Schirmer, 1955.

For the classes, they can be defined as coincidence sets of liftings like we did for fixed points.

Also a more geometric definition:

For a Nielsen coincidence theory, we need coincidence classes, and a coincidence index.

This was first done by Schirmer, 1955.

For the classes, they can be defined as coincidence sets of liftings like we did for fixed points.

Also a more geometric definition: $x, y \in \operatorname{Coin}(f, g)$ are in the same class when there is a path α from x to y with $f(\alpha) \simeq g(\alpha)$.
$x, y \in \operatorname{Coin}(f, g)$ are in the same class when there is a path α from x to y with $f(\alpha) \simeq g(\alpha)$.

$x, y \in \operatorname{Coin}(f, g)$ are in the same class when there is a path α from x to y with $f(\alpha) \simeq g(\alpha)$.

The coincidence classes correspond to algebraic Reidemeister classes as follows:

The coincidence classes correspond to algebraic Reidemeister classes as follows:
$\mathcal{R}(f, g)$ is $\pi_{1}(Y)$ modulo "doubly-twisted conjugacy": $\left.\alpha\right]=[\beta]$ if and only if there is some $z \in \pi_{1}(X)$ with

$$
\alpha=g_{\#}\left(z^{-1}\right) \beta f_{\#}(z) .
$$

The coincidence classes correspond to algebraic Reidemeister classes as follows:
$\mathcal{R}(f, g)$ is $\pi_{1}(Y)$ modulo "doubly-twisted conjugacy": $\left.\alpha\right]=[\beta]$ if and only if there is some $z \in \pi_{1}(X)$ with

$$
\alpha=g_{\#}\left(z^{-1}\right) \beta f_{\#}(z) .
$$

Doubly-twisted conjugacy is again an interesting algebraic decision problem.

What about the coincidence index?

What about the coincidence index?

In dimension 1, we can look at graph intersections:

What about the coincidence index?
In dimension 1, we can look at graph intersections:

What about the coincidence index?
In dimension 1, we can look at graph intersections:

What about the coincidence index?
In dimension 1, we can look at graph intersections:

Again, the index is about the slopes when the intersect.

When the intersections are transverse, we can define the index at an isolated coincidence point as

$$
\operatorname{ind}(f, g, x)=\operatorname{sign} \operatorname{det}\left(d g_{x}-d f_{x}\right)
$$

When the intersections are transverse, we can define the index at an isolated coincidence point as

$$
\operatorname{ind}(f, g, x)=\operatorname{sign} \operatorname{det}\left(d g_{x}-d f_{x}\right)
$$

Note here also it's important that the dimensions of X and Y are equal.

When the intersections are transverse, we can define the index at an isolated coincidence point as

$$
\operatorname{ind}(f, g, x)=\operatorname{sign} \operatorname{det}\left(d g_{x}-d f_{x}\right)
$$

Note here also it's important that the dimensions of X and Y are equal.

Then we have a Lefschetz-Hopf theorem:

$$
L(f, g)=\sum_{x \in \operatorname{Coin}(f, g)} \operatorname{ind}(f, g, x)
$$

When the intersections are transverse, we can define the index at an isolated coincidence point as

$$
\operatorname{ind}(f, g, x)=\operatorname{sign} \operatorname{det}\left(d g_{x}-d f_{x}\right)
$$

Note here also it's important that the dimensions of X and Y are equal.

Then we have a Lefschetz-Hopf theorem:

$$
L(f, g)=\sum_{x \in \operatorname{Coin}(f, g)} \operatorname{ind}(f, g, x)
$$

Homological definitions exist, and axiomatics.

Schirmer defined $N(f, g)$ as the number of essential coincidence classes, and $N(f, g) \leq M C(f, g)$.

Schirmer defined $N(f, g)$ as the number of essential coincidence classes, and $N(f, g) \leq M C(f, g)$. She also proved a Wecken theorem.

Schirmer defined $N(f, g)$ as the number of essential coincidence classes, and $N(f, g) \leq M C(f, g)$. She also proved a Wecken theorem.

Theorem

When X and Y are orientable manifolds with $\operatorname{dim} X=\operatorname{dim} Y \neq 2$, we have

$$
N(f, g)=M C(f, g)
$$

There are not many surprises in Schirmer's setting (orientable, codimension 0).

There are not many surprises in Schirmer's setting (orientable, codimension 0).

For maps on circles, we have $N(f, g)=|\operatorname{deg} g-\operatorname{deg} f|$

There are not many surprises in Schirmer's setting (orientable, codimension 0).

For maps on circles, we have $N(f, g)=|\operatorname{deg} g-\operatorname{deg} f|$ (compare to $N(f)=|1-\operatorname{deg} f|$)

There are not many surprises in Schirmer's setting (orientable, codimension 0).

For maps on circles, we have $N(f, g)=|\operatorname{deg} g-\operatorname{deg} f|$ (compare to $N(f)=|1-\operatorname{deg} f|$)

And

$$
N(f, g)=|\operatorname{det}(B-A)|
$$

Nielsen coincidence theory is a generalization of fixed point theory.

Nielsen coincidence theory is a generalization of fixed point theory.

Right?

Nielsen coincidence theory is a generalization of fixed point theory.

Right?

Actually it's a subtle issue.

Nielsen coincidence theory is a generalization of fixed point theory.

Right?

Actually it's a subtle issue.

In $N(f, g)$, we change both of f and g by homotopies.

Nielsen coincidence theory is a generalization of fixed point theory.

Right?

Actually it's a subtle issue.

In $N(f, g)$, we change both of f and g by homotopies.

In Nielsen fixed point theory $f(x)=\mathrm{id}(x)$, we change f by homotopies, but not id.

So actually:

So actually: coincidence theory which is homotopy-invariant in both maps is not quite a generalization of fixed point theory which is homotopy-invariant in one map.

So actually: coincidence theory which is homotopy-invariant in both maps is not quite a generalization of fixed point theory which is homotopy-invariant in one map.

A paper by Brooks 1972:

So actually: coincidence theory which is homotopy-invariant in both maps is not quite a generalization of fixed point theory which is homotopy-invariant in one map.

A paper by Brooks 1972: On removing coincidences of two maps when only one, rather than both, of them may be deformed by a homotopy addresses this.

So actually: coincidence theory which is homotopy-invariant in both maps is not quite a generalization of fixed point theory which is homotopy-invariant in one map.

A paper by Brooks 1972: On removing coincidences of two maps when only one, rather than both, of them may be deformed by a homotopy addresses this.

Theorem

(Brooks) If the codomain is a manifold, then any coincidence set C achievable by changing both f and g can be obtained by changing only f.

For nonmanifolds, the result does not necessarily hold.

For nonmanifolds, the result does not necessarily hold.

For example, any pair of maps on graphs can be deformed to be coincidence free.

For nonmanifolds, the result does not necessarily hold.

For example, any pair of maps on graphs can be deformed to be coincidence free.

But many maps exist on bouquets of circles with $N(f) \neq 0$.

For nonmanifolds, the result does not necessarily hold.

For example, any pair of maps on graphs can be deformed to be coincidence free.

But many maps exist on bouquets of circles with $N(f) \neq 0$. (Hart will do lots of examples)

For nonmanifolds, the result does not necessarily hold.

For example, any pair of maps on graphs can be deformed to be coincidence free.

But many maps exist on bouquets of circles with $N(f) \neq 0$. (Hart will do lots of examples)

For such maps $N(f) \neq 0$ but $N(f$, id $)=0$.

For a real generalization of fixed point theory on nonmanifolds, we would need a "one-sided coincidence theory".

For a real generalization of fixed point theory on nonmanifolds, we would need a "one-sided coincidence theory".

I have no idea how to do this when $g \neq \mathrm{id}$.

For a real generalization of fixed point theory on nonmanifolds, we would need a "one-sided coincidence theory".

I have no idea how to do this when $g \neq \mathrm{id}$.

Similar issue in things like the Borsuk-Ulam question $f(x)=f(\tau(x))$

For a real generalization of fixed point theory on nonmanifolds, we would need a "one-sided coincidence theory".

I have no idea how to do this when $g \neq \mathrm{id}$.

Similar issue in things like the Borsuk-Ulam question $f(x)=f(\tau(x))$, where homotopies of f result in specific (not arbitrary) homotopies of $f \circ \tau$.

Even on manifolds, there are subtle questions concerning "one but not both".

Even on manifolds, there are subtle questions concerning "one but not both".

For example, two papers of Kelly \& Gonçalves look at:

Even on manifolds, there are subtle questions concerning "one but not both".

For example, two papers of Kelly \& Gonçalves look at:
Let (f, g) be a pair homotopic to $\left(f^{\prime}, g^{\prime}\right)$ with both pairs coincidence free.

Even on manifolds, there are subtle questions concerning "one but not both".

For example, two papers of Kelly \& Gonçalves look at:
Let (f, g) be a pair homotopic to $\left(f^{\prime}, g^{\prime}\right)$ with both pairs coincidence free. Two questions:

Even on manifolds, there are subtle questions concerning "one but not both".

For example, two papers of Kelly \& Gonçalves look at:

Let (f, g) be a pair homotopic to $\left(f^{\prime}, g^{\prime}\right)$ with both pairs coincidence free. Two questions:

- Are they homotopic by a coincidence-free homotopy?

Even on manifolds, there are subtle questions concerning "one but not both".

For example, two papers of Kelly \& Gonçalves look at:

Let (f, g) be a pair homotopic to $\left(f^{\prime}, g^{\prime}\right)$ with both pairs coincidence free. Two questions:

- Are they homotopic by a coincidence-free homotopy?
- If we fix an arbitrary homotopy G_{t}, is there a homotopy F_{t} such that $\left(G_{t}, F_{t}\right)$ is coincidence free?

Even on manifolds, there are subtle questions concerning "one but not both".

For example, two papers of Kelly \& Gonçalves look at:

Let (f, g) be a pair homotopic to $\left(f^{\prime}, g^{\prime}\right)$ with both pairs coincidence free. Two questions:

- Are they homotopic by a coincidence-free homotopy?
- If we fix an arbitrary homotopy G_{t}, is there a homotopy F_{t} such that $\left(G_{t}, F_{t}\right)$ is coincidence free?

For which spaces are these questions equivalent?

Even on manifolds, there are subtle questions concerning "one but not both".

For example, two papers of Kelly \& Gonçalves look at:

Let (f, g) be a pair homotopic to $\left(f^{\prime}, g^{\prime}\right)$ with both pairs coincidence free. Two questions:

- Are they homotopic by a coincidence-free homotopy?
- If we fix an arbitrary homotopy G_{t}, is there a homotopy F_{t} such that $\left(G_{t}, F_{t}\right)$ is coincidence free?

For which spaces are these questions equivalent? G\&K answer it for surfaces.

Even on manifolds, there are subtle questions concerning "one but not both".

For example, two papers of Kelly \& Gonçalves look at:

Let (f, g) be a pair homotopic to $\left(f^{\prime}, g^{\prime}\right)$ with both pairs coincidence free. Two questions:

- Are they homotopic by a coincidence-free homotopy?
- If we fix an arbitrary homotopy G_{t}, is there a homotopy F_{t} such that $\left(G_{t}, F_{t}\right)$ is coincidence free?

For which spaces are these questions equivalent? G\&K answer it for surfaces. It's complicated.

Anyway, let's try to build a Nielsen theory for nonorientable manifolds, same dimension.

Anyway, let's try to build a Nielsen theory for nonorientable manifolds, same dimension.

Here, the coincidence classes still work perfectly.

Anyway, let's try to build a Nielsen theory for nonorientable manifolds, same dimension.

Here, the coincidence classes still work perfectly. The problem is the index.

Anyway, let's try to build a Nielsen theory for nonorientable manifolds, same dimension.

Here, the coincidence classes still work perfectly. The problem is the index.

You can still define it like:

$$
\operatorname{sign} \operatorname{det}\left(d g_{x}-d f_{x}\right)
$$

Anyway, let's try to build a Nielsen theory for nonorientable manifolds, same dimension.

Here, the coincidence classes still work perfectly. The problem is the index.

You can still define it like:

$$
\operatorname{sign} \operatorname{det}\left(d g_{x}-d f_{x}\right)
$$

But on a nonorientable manifold there is some more subtlety.

These two orientations at $f(y)=g(y)$ may not be the same.

These two orientations at $f(y)=g(y)$ may not be the same.

This happens when the two fixed points have opposite local indices

These two orientations at $f(y)=g(y)$ may not be the same.

This happens when the two fixed points have opposite local indices

OR, it can happen because the paths traverse orientation reversing loops.

In either case we say x and y are reducing

In either case we say x and y are reducing, in which case they can combine and remove.

In either case we say x and y are reducing, in which case they can combine and remove.

Sometimes this happens even if they have the same local index.

In either case we say x and y are reducing, in which case they can combine and remove.

Sometimes this happens even if they have the same local index.

Sometimes a point of index 2 can be reducing with itself!

In either case we say x and y are reducing, in which case they can combine and remove.

Sometimes this happens even if they have the same local index.

Sometimes a point of index 2 can be reducing with itself! (Split it into two reducing +1 s .)

Actually you don't even need to split it sometimes.

Actually you don't even need to split it sometimes. Points of local index 2 can disappear.

Actually you don't even need to split it sometimes. Points of local index 2 can disappear.

Example: Let $f, g: \mathbb{R} P_{2} \rightarrow \mathbb{R} P_{2}$ by $f(z)=0$ and $g(z)=z^{2}$.

Actually you don't even need to split it sometimes. Points of local index 2 can disappear.

Example: Let $f, g: \mathbb{R} P_{2} \rightarrow \mathbb{R} P_{2}$ by $f(z)=0$ and $g(z)=z^{2}$.

Then $\operatorname{Coin}(f, g)=0$ and this has local index 2 .

Actually you don't even need to split it sometimes. Points of local index 2 can disappear.

Example: Let $f, g: \mathbb{R} P_{2} \rightarrow \mathbb{R} P_{2}$ by $f(z)=0$ and $g(z)=z^{2}$.

Then $\operatorname{Coin}(f, g)=0$ and this has local index 2 .

But here g is homotopic to 0 by $G_{t}(z)=\operatorname{tg}(z)$

Actually you don't even need to split it sometimes. Points of local index 2 can disappear.

Example: Let $f, g: \mathbb{R} P_{2} \rightarrow \mathbb{R} P_{2}$ by $f(z)=0$ and $g(z)=z^{2}$.

Then $\operatorname{Coin}(f, g)=0$ and this has local index 2 .

But here g is homotopic to 0 by $G_{t}(z)=\operatorname{tg}(z)$, so we can make the coincidence point disappear.

Actually you don't even need to split it sometimes. Points of local index 2 can disappear.

Example: Let $f, g: \mathbb{R} P_{2} \rightarrow \mathbb{R} P_{2}$ by $f(z)=0$ and $g(z)=z^{2}$.

Then $\operatorname{Coin}(f, g)=0$ and this has local index 2 .

But here g is homotopic to 0 by $G_{t}(z)=\operatorname{tg}(z)$, so we can make the coincidence point disappear.

So the local index is not good enough.

Actually you don't even need to split it sometimes. Points of local index 2 can disappear.

Example: Let $f, g: \mathbb{R} P_{2} \rightarrow \mathbb{R} P_{2}$ by $f(z)=0$ and $g(z)=z^{2}$.

Then $\operatorname{Coin}(f, g)=0$ and this has local index 2 .

But here g is homotopic to 0 by $G_{t}(z)=\operatorname{tg}(z)$, so we can make the coincidence point disappear.

So the local index is not good enough. A mod 2 index would work, but this isn't very useful.

There is a subtler type of index in this case called the "semi-index" by Dobreńko \& Jezierski 1993.

There is a subtler type of index in this case called the "semi-index" by Dobreńko \& Jezierski 1993.

Points are reducing only when they are in the same coincidence class.

There is a subtler type of index in this case called the "semi-index" by Dobreńko \& Jezierski 1993.

Points are reducing only when they are in the same coincidence class.

The semi-index of a class C is the size of a minimal subset of C in which no points reduce each other.

The semi-index is defined only for a whole coincidence class, not for individual points.

The semi-index is defined only for a whole coincidence class, not for individual points.

Because it can't be localized.

The semi-index is defined only for a whole coincidence class, not for individual points.

Because it can't be localized.

But it is preserved by homotopy, so can be used to define essentiality of a class.

The semi-index is defined only for a whole coincidence class, not for individual points.

Because it can't be localized.

But it is preserved by homotopy, so can be used to define essentiality of a class.

Then $N(f, g)$ is defined, and $N(f, g) \leq M C(f, g)$.

The semi-index is defined only for a whole coincidence class, not for individual points.

Because it can't be localized.

But it is preserved by homotopy, so can be used to define essentiality of a class.

Then $N(f, g)$ is defined, and $N(f, g) \leq M C(f, g)$.

Also D\&J prove a Wecken theorem when $\operatorname{dim} \neq 2$.

Things get much wilder when you try to let the dimensions be different.

Things get much wilder when you try to let the dimensions be different.

When $\operatorname{dim} X=n$ and $\operatorname{dim} Y=m$, the equation $f(x)=g(x)$ is satisfied generally by a submanifold of dimension $n-m$.

Things get much wilder when you try to let the dimensions be different.

When $\operatorname{dim} X=n$ and $\operatorname{dim} Y=m$, the equation $f(x)=g(x)$ is satisfied generally by a submanifold of dimension $n-m$.

When $m>n$, it's easy to show that any pair $f, g: X \rightarrow Y$ can be made coincidence free by putting the graphs in general position.

Things get much wilder when you try to let the dimensions be different.

When $\operatorname{dim} X=n$ and $\operatorname{dim} Y=m$, the equation $f(x)=g(x)$ is satisfied generally by a submanifold of dimension $n-m$.

When $m>n$, it's easy to show that any pair $f, g: X \rightarrow Y$ can be made coincidence free by putting the graphs in general position.

So Nielsen coincidence theory with different dimensions always focuses on the case $\operatorname{dim} X>\operatorname{dim} Y$.

Again, we expect that $\operatorname{Coin}(f, g) \subset X$ is a $(n-m)$-dimensional submanifold.

Again, we expect that $\operatorname{Coin}(f, g) \subset X$ is a $(n-m)$-dimensional submanifold.

Now it's hard to say what we're looking for in a Nielsen number.

Again, we expect that $\operatorname{Coin}(f, g) \subset X$ is a $(n-m)$-dimensional submanifold.

Now it's hard to say what we're looking for in a Nielsen number.

We'll want $N(f, g) \leq M C(f, g)$, but the latter will probably be infinite.

Again, we expect that $\operatorname{Coin}(f, g) \subset X$ is a $(n-m)$-dimensional submanifold.

Now it's hard to say what we're looking for in a Nielsen number.

We'll want $N(f, g) \leq M C(f, g)$, but the latter will probably be infinite.

So we need to decide what exactly we're going to minimize.

Not hard to see that the classes are clopen sets in $\operatorname{Coin}(f, g)$.

Not hard to see that the classes are clopen sets in $\operatorname{Coin}(f, g)$. So they have a nice components structure.

Not hard to see that the classes are clopen sets in $\operatorname{Coin}(f, g)$. So they have a nice components structure.

A typical goal is to minimize the number of connected components

$$
M C C(f, g)=\min \left\{\# \pi_{0}\left(\operatorname{Coin}\left(f^{\prime}, g^{\prime}\right)\right) \mid f^{\prime} \simeq f, g^{\prime} \simeq g\right\}
$$

Not hard to see that the classes are clopen sets in $\operatorname{Coin}(f, g)$. So they have a nice components structure.

A typical goal is to minimize the number of connected components

$$
M C C(f, g)=\min \left\{\# \pi_{0}\left(\operatorname{Coin}\left(f^{\prime}, g^{\prime}\right)\right) \mid f^{\prime} \simeq f, g^{\prime} \simeq g\right\}
$$

But actually there is more subtlety even here.

Not hard to see that the classes are clopen sets in $\operatorname{Coin}(f, g)$. So they have a nice components structure.

A typical goal is to minimize the number of connected components

$$
M C C(f, g)=\min \left\{\# \pi_{0}\left(\operatorname{Coin}\left(f^{\prime}, g^{\prime}\right)\right) \mid f^{\prime} \simeq f, g^{\prime} \simeq g\right\}
$$

But actually there is more subtlety even here.

When the $\operatorname{MC}(f, g)$ is finite, it may still be different from $\operatorname{MCC}(f, g)$.

Gonçalves gives an example in which $M C(f, g)=2$ but (f, g) can be changed to have a single arc as the coincidence set.

Gonçalves gives an example in which $M C(f, g)=2$ but (f, g) can be changed to have a single arc as the coincidence set.

So $M C(f, g)=2$ and $M C C(f, g)=1$.

Gonçalves gives an example in which $M C(f, g)=2$ but (f, g) can be changed to have a single arc as the coincidence set.

So $M C(f, g)=2$ and $\operatorname{MCC}(f, g)=1$.
$M C(f, g)$ and $M C C(f, g)$ cannot be simultaneously realized.

Gonçalves gives an example in which $M C(f, g)=2$ but (f, g) can be changed to have a single arc as the coincidence set.

So $M C(f, g)=2$ and $\operatorname{MCC}(f, g)=1$.
$M C(f, g)$ and $M C C(f, g)$ cannot be simultaneously realized.
(But if one is zero, the other is too.)

Anyway, let's try to construct our Neilsen theory.

Anyway, let's try to construct our Neilsen theory.

Coincidence classes are well defined in this setting.

Anyway, let's try to construct our Neilsen theory.

Coincidence classes are well defined in this setting.

The problem is the index.

Anyway, let's try to construct our Neilsen theory.

Coincidence classes are well defined in this setting.

The problem is the index.

The usual definitions of the Lefschetz number and index don't work.

Anyway, let's try to construct our Neilsen theory.

Coincidence classes are well defined in this setting.

The problem is the index.

The usual definitions of the Lefschetz number and index don't work.

Maybe we need some other version of essentiality.

A simple attempt to define essentiality is:

A simple attempt to define essentiality is: a class is essential when it cannot be removed by homotopy.

A simple attempt to define essentiality is: a class is essential when it cannot be removed by homotopy.

Such a class is "geometrically essential".

A simple attempt to define essentiality is: a class is essential when it cannot be removed by homotopy.

Such a class is "geometrically essential".

This can be very hard to compute.

It's been done for tori and nilmanifolds though. (Jezierski, Gonçalves \& Wong 2001)

It's been done for tori and nilmanifolds though. (Jezierski, Gonçalves \& Wong 2001)

For tori with maps given by matrices A, B :

$$
N_{G}(f, g)=\# \operatorname{coker}(B-A)
$$

It's been done for tori and nilmanifolds though. (Jezierski, Gonçalves \& Wong 2001)

For tori with maps given by matrices A, B :

$$
N_{G}(f, g)=\# \operatorname{coker}(B-A)
$$

There is also a Jiang-type property for these spaces.

There are other approaches other than "geometric essentiality".

There are other approaches other than "geometric essentiality".

There is an obstruction theory approach:

There are other approaches other than "geometric essentiality".

There is an obstruction theory approach:

A certain class is defined in $H^{n}(M ; \mathbb{Z} \pi)$ (cohomology with local coefficients)

There are other approaches other than "geometric essentiality".

There is an obstruction theory approach:

A certain class is defined in $H^{n}(M ; \mathbb{Z} \pi)$ (cohomology with local coefficients)

If this class is nonzero, then the maps may not be made coincidence free.

This approach works pretty well for the "self-coincidence" problem.

This approach works pretty well for the "self-coincidence" problem.

Specifically: when can Coin (f, f) be made empty by homotopies?

This approach works pretty well for the "self-coincidence" problem.

Specifically: when can Coin (f, f) be made empty by homotopies?

This turns out to be more manageable.

When (f, f) can be made coincidence free, f is called loose.

When (f, f) can be made coincidence free, f is called loose.

If this can be done by ε-homotopy for any $\varepsilon>0$, it's called loose by small deformation.

When (f, f) can be made coincidence free, f is called loose.

If this can be done by ε-homotopy for any $\varepsilon>0$, it's called loose by small deformation.

These are different- it's possible for (f, f) to be loose but not loose by small deformations.

When (f, f) can be made coincidence free, f is called loose.

If this can be done by ε-homotopy for any $\varepsilon>0$, it's called loose by small deformation.

These are different- it's possible for (f, f) to be loose but not loose by small deformations.

Another approach to all this is in terms of bordisms.

Recall in fixed point theory, the fixed point set varies during a homotopy like so:

Recall in fixed point theory, the fixed point set varies during a homotopy like so:

At each stage of the homotopy we have discrete points and integer invariants can be defined.

For positive codimension coincidence theory, the picture is like this:

For positive codimension coincidence theory, the picture is like this:

For positive codimension coincidence theory, the picture is like this:

At each stage we have a submanifold which is cobordant with Coin (f, g) in a certain way.

So Koschorke (2000s) defines essentiality in terms of certain bordism classes.

So Koschorke (2000s) defines essentiality in terms of certain bordism classes.

Then a Nielsen number can be defined.

So Koschorke (2000s) defines essentiality in terms of certain bordism classes.

Then a Nielsen number can be defined. It is very hard to compute, even for self-coincidences on simple spaces.

So Koschorke (2000s) defines essentiality in terms of certain bordism classes.

Then a Nielsen number can be defined. It is very hard to compute, even for self-coincidences on simple spaces.

For example, Koschorke \& Randall (2013) show that a question about a certain map $S^{n} \rightarrow S^{m} / G$ being loose but not by small deformation is equivalent to

So Koschorke (2000s) defines essentiality in terms of certain bordism classes.

Then a Nielsen number can be defined. It is very hard to compute, even for self-coincidences on simple spaces.

For example, Koschorke \& Randall (2013) show that a question about a certain map $S^{n} \rightarrow S^{m} / G$ being loose but not by small deformation is equivalent to a solution of the Kervaire invariant problem.

So Koschorke (2000s) defines essentiality in terms of certain bordism classes.

Then a Nielsen number can be defined. It is very hard to compute, even for self-coincidences on simple spaces.

For example, Koschorke \& Randall (2013) show that a question about a certain map $S^{n} \rightarrow S^{m} / G$ being loose but not by small deformation is equivalent to a solution of the Kervaire invariant problem.

This is hard stuff, but obviously very deep.

So Koschorke (2000s) defines essentiality in terms of certain bordism classes.

Then a Nielsen number can be defined. It is very hard to compute, even for self-coincidences on simple spaces.

For example, Koschorke \& Randall (2013) show that a question about a certain map $S^{n} \rightarrow S^{m} / G$ being loose but not by small deformation is equivalent to a solution of the Kervaire invariant problem.

This is hard stuff, but obviously very deep. So it's worth it.

The end!

The end! (Finally!)

