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At this point, there are many types of Nielsen theories.

Start with f (x) = x , and generalize to other types of things.

We did f n(x) = x , which is a very well-developed theory.

Today we’ll do f (x) = g(x) for two different maps.
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Some other Nielsen theories briefly.

What they have in common generally is some idea of “fixed point classes”,
and “essentiality”.

Roots: f : X → Y , study points with f (x) = a for some a ∈ Y .

Nielsen root theory is very old, starting in a sense with the Hopf degree.

Could easily do another whole day on root theory. (Brown’s talk Saturday)
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Relative Nielsen theory:

Done first by Schirmer, 1986.

Take A ⊂ X , and a map f : (X ,A)→ (X ,A), so f : X → X and f (A) ⊂ A.

Then N(f ;X ,A) is a lower bound for the number of fixed points of
homotopic maps of pairs.
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n-valued maps:

Schirmer, 1984.

Described in Daciberg’s talk, Brown will do coincidences and roots.

The image of a point is always a set of n distinct images.

A fixed point is some x ∈ f (x).

Also a general theory for multivalued maps: begun by Andres, Górniewicz,
Jezierski, 2000.

No regularity assumptions about the number of images.
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Equivariant maps:

Done first by Wong, 1991.

Let X be a space with an action by a Lie group G , and let f be
G-invariant.

How does the fixed point set behave under homotopies through G-maps?

(Better’s talk)
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Borsuk-Ulam points by Cotrim & Vendruscolo

And several others.

Try your own! But ask around first.
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Coincidence theory: f (x) = g(x).

First thing to notice is that this question does not only apply to selfmaps.

We generally take f : X → Y where X and Y are different.

Like in fixed point theory, we want an invariant to measure:

MC(f , g) = min{#Coin(f ′, g ′) | f ′ ' f , g ′ ' g}
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Lefschetz’s original work in 1920s actually includes this setting.

Lefschetz assumes X and Y are orientable differential manifolds of the
same dimension n.

Then L(f , g) is the alternating sum of the traces of the composition:

Hq(X )
f∗q−→ Hq(Y )

DY−→ Hn−q(Y )
g∗n−q
−→ Hn−q(X )

D−1
X−→ Hq(X )

where DX and DY are the Poincaré duality isomorphisms.

This is homotopy invariant, and L(f , g) 6= 0 =⇒ Coin(f , g) 6= ∅.
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Hq(X )
f∗q−→ Hq(Y )

DY−→ Hn−q(Y )
g∗n−q
−→ Hn−q(X )

D−1
X−→ Hq(X )

This will not work without orientability.

This really won’t work if the dimensions of X and Y are different.

This really really won’t work if X and Y aren’t manifolds.

So we’ll focus on pairs of orientable manifolds, same dimension.
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For a Nielsen coincidence theory, we need coincidence classes, and a
coincidence index.

This was first done by Schirmer, 1955.

For the classes, they can be defined as coincidence sets of liftings like we
did for fixed points.

Also a more geometric definition: x , y ∈ Coin(f , g) are in the same class
when there is a path α from x to y with f (α) ' g(α).
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x , y ∈ Coin(f , g) are in the same class when there is a path α from x to y
with f (α) ' g(α).

f ,g−→
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The coincidence classes correspond to algebraic Reidemeister classes as
follows:

R(f , g) is π1(Y ) modulo “doubly-twisted conjugacy”: [α] = [β] if and
only if there is some z ∈ π1(X ) with

α = g#(z−1)βf#(z).

Doubly-twisted conjugacy is again an interesting algebraic decision
problem.
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What about the coincidence index?

In dimension 1, we can look at graph intersections:

Again, the index is about the slopes when the intersect.

Staecker (Fairfield U.) Coincidence points 14 / 44



What about the coincidence index?

In dimension 1, we can look at graph intersections:

Again, the index is about the slopes when the intersect.

Staecker (Fairfield U.) Coincidence points 14 / 44



What about the coincidence index?

In dimension 1, we can look at graph intersections:

Again, the index is about the slopes when the intersect.

Staecker (Fairfield U.) Coincidence points 14 / 44



What about the coincidence index?

In dimension 1, we can look at graph intersections:

Again, the index is about the slopes when the intersect.

Staecker (Fairfield U.) Coincidence points 14 / 44



What about the coincidence index?

In dimension 1, we can look at graph intersections:

Again, the index is about the slopes when the intersect.

Staecker (Fairfield U.) Coincidence points 14 / 44



When the intersections are transverse, we can define the index at an
isolated coincidence point as

ind(f , g , x) = sign det(dgx − dfx ).

Note here also it’s important that the dimensions of X and Y are equal.

Then we have a Lefschetz-Hopf theorem:

L(f , g) =
∑

x∈Coin(f ,g)
ind(f , g , x).

Homological definitions exist, and axiomatics.
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Schirmer defined N(f , g) as the number of essential coincidence classes,
and N(f , g) ≤ MC(f , g).

She also proved a Wecken theorem.

Theorem
When X and Y are orientable manifolds with dim X = dim Y 6= 2, we have

N(f , g) = MC(f , g)
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There are not many surprises in Schirmer’s setting (orientable,
codimension 0).

For maps on circles, we have N(f , g) = | deg g − deg f |
(compare to N(f ) = |1− deg f |)

And

N(f , g) = | det(B − A)|
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Nielsen coincidence theory is a generalization of fixed point theory.

Right?

Actually it’s a subtle issue.

In N(f , g), we change both of f and g by homotopies.

In Nielsen fixed point theory f (x) = id(x), we change f by homotopies,
but not id.

Staecker (Fairfield U.) Coincidence points 18 / 44



Nielsen coincidence theory is a generalization of fixed point theory.

Right?

Actually it’s a subtle issue.

In N(f , g), we change both of f and g by homotopies.

In Nielsen fixed point theory f (x) = id(x), we change f by homotopies,
but not id.

Staecker (Fairfield U.) Coincidence points 18 / 44



Nielsen coincidence theory is a generalization of fixed point theory.

Right?

Actually it’s a subtle issue.

In N(f , g), we change both of f and g by homotopies.

In Nielsen fixed point theory f (x) = id(x), we change f by homotopies,
but not id.

Staecker (Fairfield U.) Coincidence points 18 / 44



Nielsen coincidence theory is a generalization of fixed point theory.

Right?

Actually it’s a subtle issue.

In N(f , g), we change both of f and g by homotopies.

In Nielsen fixed point theory f (x) = id(x), we change f by homotopies,
but not id.

Staecker (Fairfield U.) Coincidence points 18 / 44



Nielsen coincidence theory is a generalization of fixed point theory.

Right?

Actually it’s a subtle issue.

In N(f , g), we change both of f and g by homotopies.

In Nielsen fixed point theory f (x) = id(x), we change f by homotopies,
but not id.

Staecker (Fairfield U.) Coincidence points 18 / 44



So actually:

coincidence theory which is homotopy-invariant in both maps
is not quite a generalization of fixed point theory which is
homotopy-invariant in one map.

A paper by Brooks 1972: On removing coincidences of two maps when
only one, rather than both, of them may be deformed by a homotopy
addresses this.

Theorem
(Brooks) If the codomain is a manifold, then any coincidence set C
achievable by changing both f and g can be obtained by changing only f .
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For nonmanifolds, the result does not necessarily hold.

For example, any pair of maps on graphs can be deformed to be
coincidence free.

But many maps exist on bouquets of circles with N(f ) 6= 0. (Hart will do
lots of examples)

For such maps N(f ) 6= 0 but N(f , id) = 0.
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For a real generalization of fixed point theory on nonmanifolds, we would
need a “one-sided coincidence theory”.

I have no idea how to do this when g 6= id.

Similar issue in things like the Borsuk-Ulam question f (x) = f (τ(x)),
where homotopies of f result in specific (not arbitrary) homotopies of f ◦ τ .
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Even on manifolds, there are subtle questions concerning “one but not
both”.

For example, two papers of Kelly & Gonçalves look at:

Let (f , g) be a pair homotopic to (f ′, g ′) with both pairs coincidence free.
Two questions:

I Are they homotopic by a coincidence-free homotopy?
I If we fix an arbitrary homotopy Gt , is there a homotopy Ft such that

(Gt ,Ft) is coincidence free?

For which spaces are these questions equivalent? G&K answer it for
surfaces. It’s complicated.
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Let (f , g) be a pair homotopic to (f ′, g ′) with both pairs coincidence free.
Two questions:

I Are they homotopic by a coincidence-free homotopy?
I If we fix an arbitrary homotopy Gt , is there a homotopy Ft such that

(Gt ,Ft) is coincidence free?

For which spaces are these questions equivalent? G&K answer it for
surfaces. It’s complicated.

Staecker (Fairfield U.) Coincidence points 22 / 44



Even on manifolds, there are subtle questions concerning “one but not
both”.

For example, two papers of Kelly & Gonçalves look at:
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Anyway, let’s try to build a Nielsen theory for nonorientable manifolds,
same dimension.

Here, the coincidence classes still work perfectly. The problem is the index.

You can still define it like:

sign det(dgx − dfx )

But on a nonorientable manifold there is some more subtlety.
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These two orientations at f (y) = g(y) may not be the same.

This happens when the two fixed points have opposite local indices

OR,it can happen because the paths traverse orientation reversing loops.
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In either case we say x and y are reducing

, in which case they can
combine and remove.

Sometimes this happens even if they have the same local index.

Sometimes a point of index 2 can be reducing with itself! (Split it into two
reducing +1s.)

Staecker (Fairfield U.) Coincidence points 26 / 44



In either case we say x and y are reducing, in which case they can
combine and remove.

Sometimes this happens even if they have the same local index.

Sometimes a point of index 2 can be reducing with itself! (Split it into two
reducing +1s.)

Staecker (Fairfield U.) Coincidence points 26 / 44



In either case we say x and y are reducing, in which case they can
combine and remove.

Sometimes this happens even if they have the same local index.

Sometimes a point of index 2 can be reducing with itself! (Split it into two
reducing +1s.)

Staecker (Fairfield U.) Coincidence points 26 / 44



In either case we say x and y are reducing, in which case they can
combine and remove.

Sometimes this happens even if they have the same local index.

Sometimes a point of index 2 can be reducing with itself!

(Split it into two
reducing +1s.)

Staecker (Fairfield U.) Coincidence points 26 / 44



In either case we say x and y are reducing, in which case they can
combine and remove.

Sometimes this happens even if they have the same local index.

Sometimes a point of index 2 can be reducing with itself! (Split it into two
reducing +1s.)

Staecker (Fairfield U.) Coincidence points 26 / 44



Actually you don’t even need to split it sometimes.

Points of local index 2
can disappear.

Example: Let f , g : RP2 → RP2 by f (z) = 0 and g(z) = z2.

Then Coin(f , g) = 0 and this has local index 2.

But here g is homotopic to 0 by Gt(z) = tg(z), so we can make the
coincidence point disappear.

So the local index is not good enough. A mod 2 index would work, but
this isn’t very useful.
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There is a subtler type of index in this case called the “semi-index” by
Dobreńko & Jezierski 1993.

Points are reducing only when they are in the same coincidence class.

The semi-index of a class C is the size of a minimal subset of C in which
no points reduce each other.
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The semi-index is defined only for a whole coincidence class, not for
individual points.

Because it can’t be localized.

But it is preserved by homotopy, so can be used to define essentiality of a
class.

Then N(f , g) is defined, and N(f , g) ≤ MC(f , g).

Also D&J prove a Wecken theorem when dim 6= 2.
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Things get much wilder when you try to let the dimensions be different.

When dim X = n and dim Y = m, the equation f (x) = g(x) is satisfied
generally by a submanifold of dimension n −m.

When m > n, it’s easy to show that any pair f , g : X → Y can be made
coincidence free by putting the graphs in general position.

So Nielsen coincidence theory with different dimensions always focuses on
the case dim X > dim Y .
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Again, we expect that Coin(f , g) ⊂ X is a (n −m)-dimensional
submanifold.

Now it’s hard to say what we’re looking for in a Nielsen number.

We’ll want N(f , g) ≤ MC(f , g), but the latter will probably be infinite.

So we need to decide what exactly we’re going to minimize.
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Not hard to see that the classes are clopen sets in Coin(f , g).

So they have
a nice components structure.

A typical goal is to minimize the number of connected components

MCC(f , g) = min{#π0(Coin(f ′, g ′)) | f ′ ' f , g ′ ' g}

But actually there is more subtlety even here.

When the MC(f , g) is finite, it may still be different from MCC(f , g).
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Gonçalves gives an example in which MC(f , g) = 2 but (f , g) can be
changed to have a single arc as the coincidence set.

So MC(f , g) = 2 and MCC(f , g) = 1.

MC(f , g) and MCC(f , g) cannot be simultaneously realized.

(But if one is zero, the other is too.)
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Anyway, let’s try to construct our Neilsen theory.

Coincidence classes are well defined in this setting.

The problem is the index.

The usual definitions of the Lefschetz number and index don’t work.

Maybe we need some other version of essentiality.
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A simple attempt to define essentiality is:

a class is essential when it
cannot be removed by homotopy.

Such a class is “geometrically essential”.

This can be very hard to compute.
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It’s been done for tori and nilmanifolds though. (Jezierski, Gonçalves &
Wong 2001)

For tori with maps given by matrices A,B:

NG(f , g) = # coker(B − A)

There is also a Jiang-type property for these spaces.
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There are other approaches other than “geometric essentiality”.

There is an obstruction theory approach:

A certain class is defined in Hn(M;Zπ) (cohomology with local
coefficients)

If this class is nonzero, then the maps may not be made coincidence free.
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This approach works pretty well for the “self-coincidence” problem.

Specifically: when can Coin(f , f ) be made empty by homotopies?

This turns out to be more manageable.
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When (f , f ) can be made coincidence free, f is called loose.

If this can be done by ε-homotopy for any ε > 0, it’s called loose by small
deformation.

These are different- it’s possible for (f , f ) to be loose but not loose by
small deformations.

Another approach to all this is in terms of bordisms.
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Recall in fixed point theory, the fixed point set varies during a homotopy
like so:

At each stage of the homotopy we have discrete points and integer
invariants can be defined.
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For positive codimension coincidence theory, the picture is like this:
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At each stage we have a submanifold which is cobordant with Coin(f , g)
in a certain way.
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So Koschorke (2000s) defines essentiality in terms of certain bordism
classes.

Then a Nielsen number can be defined. It is very hard to compute, even
for self-coincidences on simple spaces.

For example, Koschorke & Randall (2013) show that a question about a
certain map Sn → Sm/G being loose but not by small deformation is
equivalent to a solution of the Kervaire invariant problem.

This is hard stuff, but obviously very deep. So it’s worth it.
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The end!

(Finally!)
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