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Thanks

Who my talk is for.

Please ask questions.

Videos will be on YouTube. (tell your friends)
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Some good books

There have been a few books about Nielsen theory:

I Bob Brown, The Lefschetz Fixed Point Theorem, 1977.

I Boju Jiang, Lectures on Nielsen Fixed Point Theory, 1981.
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Some more good books

I Tsai-han Kiang, The Theory of Fixed Point Classes, 1989.

I Jerzy Jeziersky, Wac law Marzantowicz, Homotopy

Methods in Topological Fixed and Periodic Points Theory, 2006
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We’ll start longer than 85 years ago:

Theorem
Brouwer Fixed Point Theorem, before 1912 Any selfmap of the disc
has a “fixed point”: some x with f (x) = x.

What about spaces other than the disc?

A more general result was obtained by Lefschetz for any selfmap of a
compact polyhedron X .

First define the Lefschetz number:

L(f ) =
dim X∑
q=0

(−1)q tr(f∗q : Hq(X )→ Hq(X ))

This is a homotopy invariant, and it turns out is always an integer.
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Now, (about) 85 years ago:

Theorem
Lefschetz Fixed Point Theorem, 1926 For a selfmap, if L(f ) 6= 0, then
f has a fixed point.

Lefschetz proved it for compact manifolds, Hopf for compact polyhedra
soon after.

If our space X is the disc, then L(f ) is easy to compute:

L(f ) =
dim X∑
q=0

(−1)q tr(f∗q : Hq(X )→ Hq(X ))

All f∗q are zero except f∗0 which is identity. So L(f ) = 1, so Lefschetz’s
theorem implies Brouwer’s.
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Why the Lefschetz number?

L(f ) =
dim X∑
q=0

(−1)q tr(f∗q : Hq(X )→ Hq(X ))

Let’s assume we have a simplicial map on a compact polyhedron, with
L(f ) 6= 0.

Then there is a nonzero trace f∗q, and so there is a simplex s with
fq(s) = s.

But s is topologically a q-disc, and so there is a fixed point in s by
Brouwer.
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This more or less proves Lefschetz’s theorem for simplicial maps.

For nonsimplicial maps, use the Simplicial Approximation Theorem.

Why the alternating sign in L(f )?

I was using simplices instead of homology classes- actually my argument
was for the chain sum:

dim X∑
q=0

(−1)q tr(f∗q : Cq(X )→ Cq(X ))

But this equals L(f ) by the Hopf Trace Theorem- the alternating sign is
necessary to make this work.
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L(f ) is a homotopy invariant “algebraic” count of the fixed points of f .

Like counting fixed points “with multiplicity”.

Not a perfect count of the actual number of fixed points:

It’s possible to have L(f ) = 2 with only one “double” fixed point.

Also possible to have L(f ) = 0 even though there are two fixed points with
“opposite signs”. (So generally the converse of Lefschez FPT is not true).
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In fact this can be made a bit more formal:

L(f ) can be “localized” to a
specific integer “multiplicity” for each fixed point.

This is called the fixed point index.

In dimension 1, it’s easy to define the index:

Fixed points are intersections of the graph of f and the diagonal ∆.
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The index depends on the slope as f passes through ∆.
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Specifically, when this is nonzero,

ind(f , x) = sign(1− dfx )

Turns out, a similar definition works in higher dimensions.

If f is differentiable, and has isolated fixed points which are “transverse”,
then

ind(f , x) = sign det(I − dfx )

where I is the identity matrix.

There is a much more general homological definition of the index for
nonsmooth maps, and nonisolated fixed points.

Axiomatic definitions exist too.
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When x is an isolated fixed point, ind(f , x) ∈ Z satisfies:

L(f ) =
∑

x∈Fix(f )
ind(f , x).

This is the Lefschetz-Hopf theorem (Hopf, 1929).

So ind(f , x) sums up to L(f ) which is a homotopy invariant.

How does a homotopy affect the individual fixed point indices?

When we change f by a small homotopy, the fixed points move around by
a small amount, and the indices are preserved.
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When we change f by a small homotopy, the fixed points move around by
a small amount, and the indices are preserved.

→ →

When fixed points combine, the indices add.

When can fixed points be combined?
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Let’s talk about the actual number of fixed points.

Specifically: How many fixed points can be achieved by changing the map
by homotopy?

Easy: we can always change by homotopy to increase the number of fixed
points

→
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What about minimizing the number of fixed points by homotopy?

MF (f ) = min{# Fix(f ′) | f ′ ' f }

This is much harder, and this is what Nielsen Theory is about.

Nielsen’s idea (for torus homeomorphisms in 1913, surfaces in 1927, about
85 years ago): group the fixed points into classes.

The classes are meant to group those fixed points which can be combined
by homotopies. The number of such classes will be a lower bound for the
minimal number of fixed points.
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The basic theory of fixed point classes is from Nielsen (1927)

, much
formalization and basic properties proved by Reidemeister & Wecken
(1930s & 1940s).

Let X̃ be the universal covering space with projection p : X̃ → X , and
consider the fixed point sets of the liftings of f .

If we choose a “reference lift” f̃ , then any other lift is γ f̃ for various
γ ∈ π = π1(X ).

It’s easy to show that

Fix(f ) =
⋃

γ∈π

p(Fix(γ f̃ ))

These sets in the union are the fixed point classes.
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So x , y ∈ Fix(f ) are in the same fixed point class (or Nielsen class) when
they both come from fixed points of the same lifting.

Nielsen saw that this is a necessary condition for fixed points to be
combined by a homotopy.
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An equivalent definition of the fixed point classes, also by Nielsen:

x , y are in the same Nielsen class if and only if there is a path α from x to
y with α ' f (α).

Pretty clear that this is necessary for x and y to be combined.
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The definition with liftings is a bit easier to work with:

Fix(f ) =
⋃

γ∈π

p(Fix(γ f̃ ))

This union is not disjoint, however. But it’s not too hard to decide when
the sets on the right intersect.

We say γ, σ ∈ π1(X ) are in the same Reidemeister class or
twisted-conjugacy class when:

∃z ∈ π such that γ = z−1σf#(z)

where f# is the induced map in π1.

In this case write [γ] = [σ].
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Not hard to prove: in the union

Fix(f ) =
⋃

γ∈π

p(Fix(γ f̃ ))

p Fix(γ f̃ ) = p Fix(σf̃ ) iff [γ] = [σ], and when [γ] 6= [σ] we have
p Fix(γ f̃ ) ∩ p Fix(σf̃ ) = ∅.

So the Nielsen classes of fixed points are more or less in correspondence to
the Reidemeister classes of π1 elements.

Actually some sets Fix(γ f̃ ) may be empty, so really there’s an inclusion:

{ Fixed point classes } ↪→ { Reidemeister classes }
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The algebraic decision problem of twisted conjugacy in various groups is
hotly studied

, even outside of Nielsen theory.
I Given f# : G → G and g , h ∈ G , is there an algorithm for deciding

whether [g ] = [h]? “The twisted conjugacy problem”
I Let R(f ) be the set of Reidemeister classes in G . Is R(f ) finite or

infinite?
I For which G is R(f ) always infinite when f is an isomorphism?

This is called the R∞ property, lots of work now. (Nasybullov,
Fel’shtyn, J. B. Lee)

Lots of these become easier if we assume f# is a group isomorphism.
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Back to MF (f ):

The smallest possible number of fixed points would be achieved when each
fixed point class has only 1 point. Or zero points.

How can we know if a class can be totally removed by a homotopy? The
fixed point index.

A Nielsen class is called essential if its total fixed point index sum is
nonzero. These ones cannot be made empty by homotopies.

The number of essential fixed point classes is called the Nielsen number
N(f ).

Automatically
N(f ) ≤ MF (f ).
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Let’s do some simple examples.

Selfmaps on the circle.

Since N(f ) is homotopy invariant, the only relevant information is the
degree of our selfmap.

Any degree d map can be changed by homotopy to f (z) = zd , which has
|1− d | fixed points.

These fixed points each have the same index ±1, so L(f ) = ±(1− d)
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What about the Reidemeister classes?

For the circle, π1 = Z. When are two numbers twisted-conjugate?

For x , y ∈ Z, we have [x ] = [y ] iff there is some z with

x = −z + y + f#(z) = −z + y + dz = y − (1− d)z .

So [x ] = [y ] iff x = y mod (1− d).

So R(f ) = Z|1−d |.
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Recall we had |1− d | fixed points of the same index, and it’s easy to show
that they all have different Reidemeister classes.

So we have N(f ) = |1− d |, and also MF (f ) = |1− d | since f (z) = zd has
|1− d | fixed points.

So the Nielsen theory of the circle is easy.
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What about tori?

Tori Nielsen
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There is a similar formula for maps on tori by Brooks, Brown, Pak, Taylor
(1975).

We view the n-torus as Rn/Zn.

A map on the n-torus can be “linearized” by homotopy into a n× n matrix
A with entries in Z.

They showed that this linear map has | det(I − A)| fixed points.

Further, these are all in different classes, and they all have the same index
±1.
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So on tori, we have L(f ) = ± det(I − A) and N(f ) = | det(I − A)|.

Some similar results are possible on nilmanifolds.

These are quotients of a nilpotent Lie group by a discrete set. (so tori are
nilmanifolds)

Nilmanifolds allow a similar linearization of maps, and good formulas for
Nielsen theory result. (Anosov, Fadell & Husseini 1985)
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The results on nilmanifolds and solvmanifolds use some general properties
of Nielsen theory on fibrations.

Consider a fibration F → E → B and a fiber map f : E → E with

F −−−−→ E −−−−→ B

f
y f

y fb
y

F −−−−→ E −−−−→ B

Brown (1967) looked at this setting. When is there a product formula like

N(f )
?
= N(f )N(fb)
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For cartesian products, this “naive product formula” was already known for
a long time for L(f ) and ind(f , x).

Easy to do it for N(f ).

For general fibrations, the product formula is not always satisfied.

In 1981 You gave necessary and sufficient conditions for the formula to
hold.

The conditions are a bit complicated, but fibrations over tori behave very
nicely.

See Heath’s talk for more on fiber (fibre) methods.
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A major theme in Nielsen theory has been:

Choose a category of spaces
and selfmaps, and try to compute the Nielsen number.

Surfaces have been a major topic. (Hart mini-lecture, Gonçalves later
today)

The geometrization theorem has allowed new techniques on 3-manifolds
according to their geometries. (Wong, later today)
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Methods for computation are reckoned to be successful when N(f ) can be
reduced to calculations of L(f ) or algebraic calculations of the
Reidemeister classes.

In many cases N(f ) can be reduced to L(f ) and R(f ) = #R(f ). (The
Reidemeister number)

This is true for a large class of spaces called Jiang spaces, which include:
I Lie groups, topological groups, H-spaces
I generalized lens spaces
I simply connected spaces
I quotients of Lie groups by finite subgroups

Unfortunately Jiang spaces all have π1 abelian.
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Some other spaces are still “weakly Jiang”, which means that when
L(f ) = 0 we have N(f ) = 0, and otherwise N(f ) = R(f ).

In these cases, the geometry of Fix(f ) is very closely tied to the algebra of
R(f ).

For some spaces this is known to be impossible.

Any space such that π1 has R∞ property cannot be a weakly Jiang space.
(This isn’t quite true)
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So far we have L(f ) from 1926, and N(f ) from 1927, the index and
Lefschetz-Hopf theorem in 1929.

This is the beginning of the “85 years”.

These two invariants were combined in a clever way by Reidemeister and
Wecken:

Let’s do the Lefschetz trace:∑
q

(−1)q tr(fq : Cq(X )→ Cq(X )),

but do it in X̃ instead of X .
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X̃ has the same simplicial structure as X , only every simplex has copies
parameterized by π1.

So we can consider Cq(X̃ ) as the same as Cq(X ), only allowing coefficients
from Zπ instead of Z.

Then we can write f̃q : Cq(X̃ )→ Cq(X̃ ) as a matrix with entries in Zπ,
and we can do

tr(f̃q : Cq(X̃ )→ Cq(X̃ )) ∈ Zπ.
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Reidemeister defined:

RT (f̃ ) = ρ(
∑

q
(−1)q tr(f̃q : Cq(X̃ )→ Cq(X̃ )))

now called the Reidemeister trace or generalized Lefschetz number.

Here ρ : Zπ → ZR(f ) puts group elements into Reidemeister classes.
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In an example, this RT (f̃ ) would look something like:

RT (f̃ ) = 2[γ]− 3[σ] + 1[e],

Which indicates the fixed point class with Reidemeister class [γ] has index
sum 2, the one with Reidemeister class [σ] has index sum −3, the one
with class [e] has index sum 1, and all others have index 0.

Thus L(f ) = 2− 3 + 1 = 0, and N(f ) = 3.

In general, the sum of the coefficients in R(f̃ ) is L(f ), and the number of
nonzero terms is N(f ).

The trace formula often makes this easily computable. (except for the ρ
part)
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Let’s talk about
N(f ) ≤ MF (f )

When are they equal?

Nielsen’s original setting (1920s) was surfaces homeomorphisms, in which
it’s not clear if they are always equal, though Nielsen seems to have
believed that they were.

Wecken showed (1940s) that N(f ) = MF (f ) for compact manifolds of
dimension 6= 2.

This is called the Wecken Theorem.

Dimension 1 is easy, for dimension ≥ 3 there is enough “room” to deform
f (X ) so that it intersects the diagonal ∆ once for each essential class.
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What about for polyhedra?

Shi (1966) proved that N(f ) = MF (f ) for polyhedra with dimension ≥ 3
and no local separating points.

Jiang (1979) proved that N(f ) = MF (f ) for any polyhedron without local
separating points which is not a surface.

What about surfaces?
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The Wecken issue for surfaces was also resolved by Jiang in early 1980s.

Until this time there was no known example with N(f ) 6= MF (f ) on a
surface.

Jiang constructed a map on the pants surface with N(f ) = 0 and
MF (f ) = 2.

In this example there are 2 fixed points in the same class of index +1 and
−1, so the class is not essential, but Jiang showed that MF (f ) = 2.

The paper is Fixed points and braids (1984 & 1985).
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A very vague idea of why braids are important:

Consider a map with two fixed points, and we change the map by
homotopy.

Let’s use the pants surface P, and the homotopy itself is a map on
P × [0, 1].
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This looks like:
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This thing is called a “two strand braid on P”.

There is an algebraic theory for surface braids, using the “surface braid
groups”.
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Surface braid groups have finite presentations with relators like in the
classical braid groups

, plus some relators depending on the topology of the
surface.

Jiang shows that in his example, removing the two fixed points would
require an algebraic formula to hold in the surface braid group.

Then he proves using the relations that this would be impossible.
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Braid groups now play a big role in Nielsen theory (Ferrario’s talk)

Jiang showed that his example can be embedded to make non-Wecken
maps on any surface of negative Euler characteristic.

Several people asked whether N(f ) can be arbitrarily distant from MF (f ).
Kelly showed that the difference can be arbitrarily large for any hyperbolic
surface.
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Some related questions:

I If we choose a surface selfmap “at random”, is it likely that
N(f ) = MF (f )? (S.W. Kim’s talk)

I If X is a smooth manifold, can N(f ) = MF (f ) be realized by a
smooth map? (Jezierski’s talk)

By the way, the role of smoothness is another theme in several people’s
work.

Does it matter when we restrict to smooth maps? (for the original map, or
the intermediate maps in a homotopy, etc)

Sometimes it does, sometimes it doesn’t. (Khamsemanan’s talk)
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That’s all for now!
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