85 years of Nielsen theory: Fixed Points

P. Christopher Staecker

Fairfield University, Fairfield CT

Nielsen Theory and Related Topics 2013

Thanks

Thanks

Who my talk is for.

Thanks

Who my talk is for.

Please ask questions.

Thanks

Who my talk is for.

Please ask questions.

Videos will be on YouTube.

Thanks

Who my talk is for.

Please ask questions.

Videos will be on YouTube. (tell your friends)

Some good books

There have been a few books about Nielsen theory:

Bob Brown, The Lefschetz Fixed Point Theorem, 1977.

Some good books

There have been a few books about Nielsen theory:

Bob Brown, The Lefschetz Fixed Point Theorem, 1977.

Boju Jiang, Lectures on Nielsen Fixed Point Theory, 1981.

Some more good books

Tsai-han Kiang, The Theory of Fixed Point Classes, 1989.

Some more good books

Tsai-han Kiang, The Theory of Fixed Point Classes, 1989.

Jerzy Jeziersky, Wacław Marzantowicz, Homotopy

Methods in Topological Fixed and Periodic Points Theory, 2006

We'll start longer than 85 years ago:
Theorem
Brouwer Fixed Point Theorem, before 1912 Any selfmap of the disc has a "fixed point": some x with $f(x)=x$.

We'll start longer than 85 years ago:
Theorem
Brouwer Fixed Point Theorem, before 1912 Any selfmap of the disc has a "fixed point": some x with $f(x)=x$.

What about spaces other than the disc?

We'll start longer than 85 years ago:
Theorem
Brouwer Fixed Point Theorem, before 1912 Any selfmap of the disc has a "fixed point": some x with $f(x)=x$.

What about spaces other than the disc?
A more general result was obtained by Lefschetz for any selfmap of a compact polyhedron X.

We'll start longer than 85 years ago:
Theorem
Brouwer Fixed Point Theorem, before 1912 Any selfmap of the disc has a "fixed point": some x with $f(x)=x$.

What about spaces other than the disc?
A more general result was obtained by Lefschetz for any selfmap of a compact polyhedron X.

First define the Lefschetz number:

$$
L(f)=\sum_{q=0}^{\operatorname{dim} X}(-1)^{q} \operatorname{tr}\left(f_{* q}: H_{q}(X) \rightarrow H_{q}(X)\right)
$$

We'll start longer than 85 years ago:
Theorem
Brouwer Fixed Point Theorem, before 1912 Any selfmap of the disc has a "fixed point": some x with $f(x)=x$.

What about spaces other than the disc?
A more general result was obtained by Lefschetz for any selfmap of a compact polyhedron X.

First define the Lefschetz number:

$$
L(f)=\sum_{q=0}^{\operatorname{dim} X}(-1)^{q} \operatorname{tr}\left(f_{* q}: H_{q}(X) \rightarrow H_{q}(X)\right)
$$

This is a homotopy invariant, and it turns out is always an integer.

Now, (about) 85 years ago:

Now, (about) 85 years ago:
Theorem
Lefschetz Fixed Point Theorem, 1926 For a selfmap, if $L(f) \neq 0$, then f has a fixed point.

Now, (about) 85 years ago:
Theorem
Lefschetz Fixed Point Theorem, 1926 For a selfmap, if $L(f) \neq 0$, then f has a fixed point.

Lefschetz proved it for compact manifolds, Hopf for compact polyhedra soon after.

Now, (about) 85 years ago:
Theorem
Lefschetz Fixed Point Theorem, 1926 For a selfmap, if $L(f) \neq 0$, then f has a fixed point.

Lefschetz proved it for compact manifolds, Hopf for compact polyhedra soon after.

If our space X is the disc, then $L(f)$ is easy to compute:

Now, (about) 85 years ago:
Theorem
Lefschetz Fixed Point Theorem, 1926 For a selfmap, if $L(f) \neq 0$, then f has a fixed point.

Lefschetz proved it for compact manifolds, Hopf for compact polyhedra soon after.

If our space X is the disc, then $L(f)$ is easy to compute:

$$
L(f)=\sum_{q=0}^{\operatorname{dim} X}(-1)^{q} \operatorname{tr}\left(f_{* q}: H_{q}(X) \rightarrow H_{q}(X)\right)
$$

Now, (about) 85 years ago:
Theorem
Lefschetz Fixed Point Theorem, 1926 For a selfmap, if $L(f) \neq 0$, then f has a fixed point.

Lefschetz proved it for compact manifolds, Hopf for compact polyhedra soon after.

If our space X is the disc, then $L(f)$ is easy to compute:

$$
L(f)=\sum_{q=0}^{\operatorname{dim} X}(-1)^{q} \operatorname{tr}\left(f_{* q}: H_{q}(X) \rightarrow H_{q}(X)\right)
$$

All $f_{* q}$ are zero except $f_{* 0}$ which is identity. So $L(f)=1$, so Lefschetz's theorem implies Brouwer's.

Why the Lefschetz number?

$$
L(f)=\sum_{q=0}^{\operatorname{dim} X}(-1)^{q} \operatorname{tr}\left(f_{* q}: H_{q}(X) \rightarrow H_{q}(X)\right)
$$

Why the Lefschetz number?

$$
L(f)=\sum_{q=0}^{\operatorname{dim} X}(-1)^{q} \operatorname{tr}\left(f_{* q}: H_{q}(X) \rightarrow H_{q}(X)\right)
$$

Let's assume we have a simplicial map on a compact polyhedron, with $L(f) \neq 0$.

Why the Lefschetz number?

$$
L(f)=\sum_{q=0}^{\operatorname{dim} X}(-1)^{q} \operatorname{tr}\left(f_{* q}: H_{q}(X) \rightarrow H_{q}(X)\right)
$$

Let's assume we have a simplicial map on a compact polyhedron, with $L(f) \neq 0$.

Then there is a nonzero trace $f_{* q}$

Why the Lefschetz number?

$$
L(f)=\sum_{q=0}^{\operatorname{dim} X}(-1)^{q} \operatorname{tr}\left(f_{* q}: H_{q}(X) \rightarrow H_{q}(X)\right)
$$

Let's assume we have a simplicial map on a compact polyhedron, with $L(f) \neq 0$.

Then there is a nonzero trace $f_{* q}$, and so there is a simplex s with $f_{q}(s)=s$.

Why the Lefschetz number?

$$
L(f)=\sum_{q=0}^{\operatorname{dim} X}(-1)^{q} \operatorname{tr}\left(f_{* q}: H_{q}(X) \rightarrow H_{q}(X)\right)
$$

Let's assume we have a simplicial map on a compact polyhedron, with $L(f) \neq 0$.

Then there is a nonzero trace $f_{* q}$, and so there is a simplex s with $f_{q}(s)=s$.

But s is topologically a q-disc, and so there is a fixed point in s by Brouwer.

This more or less proves Lefschetz's theorem for simplicial maps.

This more or less proves Lefschetz's theorem for simplicial maps.

For nonsimplicial maps, use the Simplicial Approximation Theorem.

This more or less proves Lefschetz's theorem for simplicial maps.

For nonsimplicial maps, use the Simplicial Approximation Theorem.

Why the alternating sign in $L(f)$?

This more or less proves Lefschetz's theorem for simplicial maps.

For nonsimplicial maps, use the Simplicial Approximation Theorem.

Why the alternating sign in $L(f)$?

I was using simplices instead of homology classes- actually my argument was for the chain sum:

$$
\sum_{q=0}^{\operatorname{dim} X}(-1)^{q} \operatorname{tr}\left(f_{* q}: C_{q}(X) \rightarrow C_{q}(X)\right)
$$

This more or less proves Lefschetz's theorem for simplicial maps.

For nonsimplicial maps, use the Simplicial Approximation Theorem.

Why the alternating sign in $L(f)$?

I was using simplices instead of homology classes- actually my argument was for the chain sum:

$$
\sum_{q=0}^{\operatorname{dim} X}(-1)^{q} \operatorname{tr}\left(f_{* q}: C_{q}(X) \rightarrow C_{q}(X)\right)
$$

But this equals $L(f)$ by the Hopf Trace Theorem-

This more or less proves Lefschetz's theorem for simplicial maps.

For nonsimplicial maps, use the Simplicial Approximation Theorem.

Why the alternating sign in $L(f)$?

I was using simplices instead of homology classes- actually my argument was for the chain sum:

$$
\sum_{q=0}^{\operatorname{dim} X}(-1)^{q} \operatorname{tr}\left(f_{* q}: C_{q}(X) \rightarrow C_{q}(X)\right)
$$

But this equals $L(f)$ by the Hopf Trace Theorem- the alternating sign is necessary to make this work.
$L(f)$ is a homotopy invariant "algebraic" count of the fixed points of f.
$L(f)$ is a homotopy invariant "algebraic" count of the fixed points of f. Like counting fixed points "with multiplicity".
$L(f)$ is a homotopy invariant "algebraic" count of the fixed points of f. Like counting fixed points "with multiplicity".

Not a perfect count of the actual number of fixed points:
$L(f)$ is a homotopy invariant "algebraic" count of the fixed points of f. Like counting fixed points "with multiplicity".

Not a perfect count of the actual number of fixed points:

It's possible to have $L(f)=2$ with only one "double" fixed point.
$L(f)$ is a homotopy invariant "algebraic" count of the fixed points of f. Like counting fixed points "with multiplicity".

Not a perfect count of the actual number of fixed points:

It's possible to have $L(f)=2$ with only one "double" fixed point.

Also possible to have $L(f)=0$ even though there are two fixed points with "opposite signs".
$L(f)$ is a homotopy invariant "algebraic" count of the fixed points of f. Like counting fixed points "with multiplicity".

Not a perfect count of the actual number of fixed points:

It's possible to have $L(f)=2$ with only one "double" fixed point.

Also possible to have $L(f)=0$ even though there are two fixed points with "opposite signs". (So generally the converse of Lefschez FPT is not true).

In fact this can be made a bit more formal:

In fact this can be made a bit more formal: $L(f)$ can be "localized" to a specific integer "multiplicity" for each fixed point.

In fact this can be made a bit more formal: $L(f)$ can be "localized" to a specific integer "multiplicity" for each fixed point.

This is called the fixed point index.

In fact this can be made a bit more formal: $L(f)$ can be "localized" to a specific integer "multiplicity" for each fixed point.

This is called the fixed point index.

In dimension 1, it's easy to define the index:

In fact this can be made a bit more formal: $L(f)$ can be "localized" to a specific integer "multiplicity" for each fixed point.

This is called the fixed point index.

In dimension 1, it's easy to define the index:

Fixed points are intersections of the graph of f and the diagonal Δ.

The index depends on the slope as f passes through Δ.

Specifically, when this is nonzero,

$$
\operatorname{ind}(f, x)=\operatorname{sign}\left(1-d f_{x}\right)
$$

Specifically, when this is nonzero,

$$
\operatorname{ind}(f, x)=\operatorname{sign}\left(1-d f_{x}\right)
$$

Turns out, a similar definition works in higher dimensions.

Specifically, when this is nonzero,

$$
\operatorname{ind}(f, x)=\operatorname{sign}\left(1-d f_{x}\right)
$$

Turns out, a similar definition works in higher dimensions.

If f is differentiable, and has isolated fixed points which are "transverse", then

Specifically, when this is nonzero,

$$
\operatorname{ind}(f, x)=\operatorname{sign}\left(1-d f_{x}\right)
$$

Turns out, a similar definition works in higher dimensions.

If f is differentiable, and has isolated fixed points which are "transverse", then

$$
\operatorname{ind}(f, x)=\operatorname{sign} \operatorname{det}\left(I-d f_{x}\right)
$$

where I is the identity matrix.

Specifically, when this is nonzero,

$$
\operatorname{ind}(f, x)=\operatorname{sign}\left(1-d f_{x}\right)
$$

Turns out, a similar definition works in higher dimensions.

If f is differentiable, and has isolated fixed points which are "transverse", then

$$
\operatorname{ind}(f, x)=\operatorname{sign} \operatorname{det}\left(I-d f_{x}\right)
$$

where I is the identity matrix.

There is a much more general homological definition of the index for nonsmooth maps, and nonisolated fixed points.

Specifically, when this is nonzero,

$$
\operatorname{ind}(f, x)=\operatorname{sign}\left(1-d f_{x}\right)
$$

Turns out, a similar definition works in higher dimensions.

If f is differentiable, and has isolated fixed points which are "transverse", then

$$
\operatorname{ind}(f, x)=\operatorname{sign} \operatorname{det}\left(I-d f_{x}\right)
$$

where I is the identity matrix.

There is a much more general homological definition of the index for nonsmooth maps, and nonisolated fixed points.

Axiomatic definitions exist too.

When x is an isolated fixed point, $\operatorname{ind}(f, x) \in \mathbb{Z}$ satisfies:

$$
L(f)=\sum_{x \in \operatorname{Fix}(f)} \operatorname{ind}(f, x) .
$$

When x is an isolated fixed point, $\operatorname{ind}(f, x) \in \mathbb{Z}$ satisfies:

$$
L(f)=\sum_{x \in \operatorname{Fix}(f)} \operatorname{ind}(f, x) .
$$

This is the Lefschetz-Hopf theorem (Hopf, 1929).

When x is an isolated fixed point, $\operatorname{ind}(f, x) \in \mathbb{Z}$ satisfies:

$$
L(f)=\sum_{x \in \operatorname{Fix}(f)} \operatorname{ind}(f, x) .
$$

This is the Lefschetz-Hopf theorem (Hopf, 1929).

So ind (f, x) sums up to $L(f)$ which is a homotopy invariant.

When x is an isolated fixed point, $\operatorname{ind}(f, x) \in \mathbb{Z}$ satisfies:

$$
L(f)=\sum_{x \in \operatorname{Fix}(f)} \operatorname{ind}(f, x) .
$$

This is the Lefschetz-Hopf theorem (Hopf, 1929).

So ind (f, x) sums up to $L(f)$ which is a homotopy invariant.

How does a homotopy affect the individual fixed point indices?

When x is an isolated fixed point, $\operatorname{ind}(f, x) \in \mathbb{Z}$ satisfies:

$$
L(f)=\sum_{x \in \operatorname{Fix}(f)} \operatorname{ind}(f, x) .
$$

This is the Lefschetz-Hopf theorem (Hopf, 1929).

So ind (f, x) sums up to $L(f)$ which is a homotopy invariant.

How does a homotopy affect the individual fixed point indices?

When we change f by a small homotopy, the fixed points move around by a small amount

When x is an isolated fixed point, $\operatorname{ind}(f, x) \in \mathbb{Z}$ satisfies:

$$
L(f)=\sum_{x \in \operatorname{Fix}(f)} \operatorname{ind}(f, x) .
$$

This is the Lefschetz-Hopf theorem (Hopf, 1929).

So ind (f, x) sums up to $L(f)$ which is a homotopy invariant.

How does a homotopy affect the individual fixed point indices?

When we change f by a small homotopy, the fixed points move around by a small amount, and the indices are preserved.

When we change f by a small homotopy, the fixed points move around by a small amount, and the indices are preserved.

When we change f by a small homotopy, the fixed points move around by a small amount, and the indices are preserved.

When we change f by a small homotopy, the fixed points move around by a small amount, and the indices are preserved.

When we change f by a small homotopy, the fixed points move around by a small amount, and the indices are preserved.

When we change f by a small homotopy, the fixed points move around by a small amount, and the indices are preserved.

When fixed points combine, the indices add.

When we change f by a small homotopy, the fixed points move around by a small amount, and the indices are preserved.

When fixed points combine, the indices add.
When can fixed points be combined?

Let's talk about the actual number of fixed points.

Let's talk about the actual number of fixed points.
Specifically: How many fixed points can be achieved by changing the map by homotopy?

Let's talk about the actual number of fixed points.
Specifically: How many fixed points can be achieved by changing the map by homotopy?

Easy: we can always change by homotopy to increase the number of fixed points

Let's talk about the actual number of fixed points.
Specifically: How many fixed points can be achieved by changing the map by homotopy?

Easy: we can always change by homotopy to increase the number of fixed points

Let's talk about the actual number of fixed points.
Specifically: How many fixed points can be achieved by changing the map by homotopy?

Easy: we can always change by homotopy to increase the number of fixed points

What about minimizing the number of fixed points by homotopy?

What about minimizing the number of fixed points by homotopy?

$$
M F(f)=\min \left\{\# \operatorname{Fix}\left(f^{\prime}\right) \mid f^{\prime} \simeq f\right\}
$$

What about minimizing the number of fixed points by homotopy?

$$
M F(f)=\min \left\{\# \operatorname{Fix}\left(f^{\prime}\right) \mid f^{\prime} \simeq f\right\}
$$

This is much harder, and this is what Nielsen Theory is about.

What about minimizing the number of fixed points by homotopy?

$$
M F(f)=\min \left\{\# \operatorname{Fix}\left(f^{\prime}\right) \mid f^{\prime} \simeq f\right\}
$$

This is much harder, and this is what Nielsen Theory is about.

Nielsen's idea (for torus homeomorphisms in 1913, surfaces in 1927, about 85 years ago): group the fixed points into classes.

What about minimizing the number of fixed points by homotopy?

$$
M F(f)=\min \left\{\# \operatorname{Fix}\left(f^{\prime}\right) \mid f^{\prime} \simeq f\right\}
$$

This is much harder, and this is what Nielsen Theory is about.

Nielsen's idea (for torus homeomorphisms in 1913, surfaces in 1927, about 85 years ago): group the fixed points into classes.

The classes are meant to group those fixed points which can be combined by homotopies.

What about minimizing the number of fixed points by homotopy?

$$
M F(f)=\min \left\{\# \operatorname{Fix}\left(f^{\prime}\right) \mid f^{\prime} \simeq f\right\}
$$

This is much harder, and this is what Nielsen Theory is about.

Nielsen's idea (for torus homeomorphisms in 1913, surfaces in 1927, about 85 years ago): group the fixed points into classes.

The classes are meant to group those fixed points which can be combined by homotopies. The number of such classes will be a lower bound for the minimal number of fixed points.

The basic theory of fixed point classes is from Nielsen (1927)

The basic theory of fixed point classes is from Nielsen (1927), much formalization and basic properties proved by Reidemeister \& Wecken (1930s \& 1940s).

The basic theory of fixed point classes is from Nielsen (1927), much formalization and basic properties proved by Reidemeister \& Wecken (1930s \& 1940s).

Let \widetilde{X} be the universal covering space with projection $p: \widetilde{X} \rightarrow X$, and consider the fixed point sets of the liftings of f.

The basic theory of fixed point classes is from Nielsen (1927), much formalization and basic properties proved by Reidemeister \& Wecken (1930s \& 1940s).

Let \widetilde{X} be the universal covering space with projection $p: \widetilde{X} \rightarrow X$, and consider the fixed point sets of the liftings of f.

If we choose a "reference lift" \tilde{f}, then any other lift is $\gamma \tilde{f}$ for various $\gamma \in \pi=\pi_{1}(X)$.

The basic theory of fixed point classes is from Nielsen (1927), much formalization and basic properties proved by Reidemeister \& Wecken (1930s \& 1940s).

Let \widetilde{X} be the universal covering space with projection $p: \widetilde{X} \rightarrow X$, and consider the fixed point sets of the liftings of f.

If we choose a "reference lift" \tilde{f}, then any other lift is $\gamma \tilde{f}$ for various $\gamma \in \pi=\pi_{1}(X)$.

It's easy to show that

$$
\operatorname{Fix}(f)=\bigcup_{\gamma \in \pi} p(\operatorname{Fix}(\gamma \tilde{f}))
$$

The basic theory of fixed point classes is from Nielsen (1927), much formalization and basic properties proved by Reidemeister \& Wecken (1930s \& 1940s).

Let \widetilde{X} be the universal covering space with projection $p: \widetilde{X} \rightarrow X$, and consider the fixed point sets of the liftings of f.

If we choose a "reference lift" \tilde{f}, then any other lift is $\gamma \tilde{f}$ for various $\gamma \in \pi=\pi_{1}(X)$.

It's easy to show that

$$
\operatorname{Fix}(f)=\bigcup_{\gamma \in \pi} p(\operatorname{Fix}(\gamma \tilde{f}))
$$

These sets in the union are the fixed point classes.

So $x, y \in \operatorname{Fix}(f)$ are in the same fixed point class (or Nielsen class) when they both come from fixed points of the same lifting.

So $x, y \in \operatorname{Fix}(f)$ are in the same fixed point class (or Nielsen class) when they both come from fixed points of the same lifting.

Nielsen saw that this is a necessary condition for fixed points to be combined by a homotopy.

An equivalent definition of the fixed point classes, also by Nielsen:

An equivalent definition of the fixed point classes, also by Nielsen:
x, y are in the same Nielsen class if and only if there is a path α from x to y with $\alpha \simeq f(\alpha)$.

An equivalent definition of the fixed point classes, also by Nielsen:
x, y are in the same Nielsen class if and only if there is a path α from x to y with $\alpha \simeq f(\alpha)$.

An equivalent definition of the fixed point classes, also by Nielsen:
x, y are in the same Nielsen class if and only if there is a path α from x to y with $\alpha \simeq f(\alpha)$.

An equivalent definition of the fixed point classes, also by Nielsen:
x, y are in the same Nielsen class if and only if there is a path α from x to y with $\alpha \simeq f(\alpha)$.

Pretty clear that this is necessary for x and y to be combined.

The definition with liftings is a bit easier to work with:

$$
\operatorname{Fix}(f)=\bigcup_{\gamma \in \pi} p(\operatorname{Fix}(\tilde{\gamma}))
$$

The definition with liftings is a bit easier to work with:

$$
\operatorname{Fix}(f)=\bigcup_{\gamma \in \pi} p(\operatorname{Fix}(\gamma \widetilde{f}))
$$

This union is not disjoint, however.

The definition with liftings is a bit easier to work with:

$$
\operatorname{Fix}(f)=\bigcup_{\gamma \in \pi} p(\operatorname{Fix}(\gamma \widetilde{f}))
$$

This union is not disjoint, however. But it's not too hard to decide when the sets on the right intersect.

The definition with liftings is a bit easier to work with:

$$
\operatorname{Fix}(f)=\bigcup_{\gamma \in \pi} p(\operatorname{Fix}(\widetilde{\gamma}))
$$

This union is not disjoint, however. But it's not too hard to decide when the sets on the right intersect.

We say $\gamma, \sigma \in \pi_{1}(X)$ are in the same Reidemeister class or twisted-conjugacy class when:

$$
\exists z \in \pi \text { such that } \gamma=z^{-1} \sigma f_{\#}(z)
$$

where $f_{\#}$ is the induced map in π_{1}.

The definition with liftings is a bit easier to work with:

$$
\operatorname{Fix}(f)=\bigcup_{\gamma \in \pi} p(\operatorname{Fix}(\widetilde{\gamma}))
$$

This union is not disjoint, however. But it's not too hard to decide when the sets on the right intersect.

We say $\gamma, \sigma \in \pi_{1}(X)$ are in the same Reidemeister class or twisted-conjugacy class when:

$$
\exists z \in \pi \text { such that } \gamma=z^{-1} \sigma f_{\#}(z)
$$

where $f_{\#}$ is the induced map in π_{1}.

In this case write $[\gamma]=[\sigma]$.

Not hard to prove: in the union

$$
\operatorname{Fix}(f)=\bigcup_{\gamma \in \pi} p(\operatorname{Fix}(\gamma \tilde{f}))
$$

Not hard to prove: in the union

$$
\operatorname{Fix}(f)=\bigcup_{\gamma \in \pi} p(\operatorname{Fix}(\widetilde{\gamma}))
$$

$p \operatorname{Fix}(\gamma \widetilde{f})=p \operatorname{Fix}(\sigma \widetilde{f})$ iff $[\gamma]=[\sigma]$,

Not hard to prove: in the union

$$
\operatorname{Fix}(f)=\bigcup_{\gamma \in \pi} p(\operatorname{Fix}(\gamma \widetilde{f}))
$$

$p \operatorname{Fix}(\gamma \widetilde{f})=p \operatorname{Fix}(\sigma \widetilde{f})$ iff $[\gamma]=[\sigma]$, and when $[\gamma] \neq[\sigma]$ we have $p \operatorname{Fix}(\gamma \widetilde{f}) \cap p \operatorname{Fix}(\sigma \widetilde{f})=\emptyset$.

Not hard to prove: in the union

$$
\operatorname{Fix}(f)=\bigcup_{\gamma \in \pi} p(\operatorname{Fix}(\gamma \tilde{f}))
$$

$p \operatorname{Fix}(\gamma \widetilde{f})=p \operatorname{Fix}(\sigma \widetilde{f})$ iff $[\gamma]=[\sigma]$, and when $[\gamma] \neq[\sigma]$ we have $p \operatorname{Fix}(\gamma \widetilde{f}) \cap p \operatorname{Fix}(\sigma \widetilde{f})=\emptyset$.

So the Nielsen classes of fixed points are more or less in correspondence to the Reidemeister classes of π_{1} elements.

Not hard to prove: in the union

$$
\operatorname{Fix}(f)=\bigcup_{\gamma \in \pi} p(\operatorname{Fix}(\gamma \tilde{f}))
$$

$p \operatorname{Fix}(\gamma \widetilde{f})=p \operatorname{Fix}(\sigma \widetilde{f})$ iff $[\gamma]=[\sigma]$, and when $[\gamma] \neq[\sigma]$ we have $p \operatorname{Fix}(\gamma \widetilde{f}) \cap p \operatorname{Fix}(\sigma \widetilde{f})=\emptyset$.

So the Nielsen classes of fixed points are more or less in correspondence to the Reidemeister classes of π_{1} elements.

Actually some sets $\operatorname{Fix}(\gamma \widetilde{f})$ may be empty, so really there's an inclusion:
$\{$ Fixed point classes $\} \hookrightarrow\{$ Reidemeister classes $\}$

The algebraic decision problem of twisted conjugacy in various groups is hotly studied

The algebraic decision problem of twisted conjugacy in various groups is hotly studied, even outside of Nielsen theory.

The algebraic decision problem of twisted conjugacy in various groups is hotly studied, even outside of Nielsen theory.

- Given $f_{\#}: G \rightarrow G$ and $g, h \in G$, is there an algorithm for deciding whether $[g]=[h]$?

The algebraic decision problem of twisted conjugacy in various groups is hotly studied, even outside of Nielsen theory.

- Given $f_{\#}: G \rightarrow G$ and $g, h \in G$, is there an algorithm for deciding whether $[g]=[h]$? "The twisted conjugacy problem"

The algebraic decision problem of twisted conjugacy in various groups is hotly studied, even outside of Nielsen theory.

- Given $f_{\#}: G \rightarrow G$ and $g, h \in G$, is there an algorithm for deciding whether $[g]=[h]$? "The twisted conjugacy problem"
- Let $\mathcal{R}(f)$ be the set of Reidemeister classes in G.

The algebraic decision problem of twisted conjugacy in various groups is hotly studied, even outside of Nielsen theory.

- Given $f_{\#}: G \rightarrow G$ and $g, h \in G$, is there an algorithm for deciding whether $[g]=[h]$? "The twisted conjugacy problem"
- Let $\mathcal{R}(f)$ be the set of Reidemeister classes in G. Is $\mathcal{R}(f)$ finite or infinite?

The algebraic decision problem of twisted conjugacy in various groups is hotly studied, even outside of Nielsen theory.

- Given $f_{\#}: G \rightarrow G$ and $g, h \in G$, is there an algorithm for deciding whether $[g]=[h]$? "The twisted conjugacy problem"
- Let $\mathcal{R}(f)$ be the set of Reidemeister classes in G. Is $\mathcal{R}(f)$ finite or infinite?
- For which G is $\mathcal{R}(f)$ always infinite when f is an isomorphism?

The algebraic decision problem of twisted conjugacy in various groups is hotly studied, even outside of Nielsen theory.

- Given $f_{\#}: G \rightarrow G$ and $g, h \in G$, is there an algorithm for deciding whether $[g]=[h]$? "The twisted conjugacy problem"
- Let $\mathcal{R}(f)$ be the set of Reidemeister classes in G. Is $\mathcal{R}(f)$ finite or infinite?
- For which G is $\mathcal{R}(f)$ always infinite when f is an isomorphism?

This is called the R_{∞} property, lots of work now. (Nasybullov, Fel'shtyn, J. B. Lee)

The algebraic decision problem of twisted conjugacy in various groups is hotly studied, even outside of Nielsen theory.

- Given $f_{\#}: G \rightarrow G$ and $g, h \in G$, is there an algorithm for deciding whether $[g]=[h]$? "The twisted conjugacy problem"
- Let $\mathcal{R}(f)$ be the set of Reidemeister classes in G. Is $\mathcal{R}(f)$ finite or infinite?
- For which G is $\mathcal{R}(f)$ always infinite when f is an isomorphism?

This is called the R_{∞} property, lots of work now. (Nasybullov, Fel'shtyn, J. B. Lee)

Lots of these become easier if we assume $f_{\#}$ is a group isomorphism.

Back to $M F(f)$:

Back to $M F(f)$:
The smallest possible number of fixed points would be achieved when each fixed point class has only 1 point.

Back to $M F(f)$:
The smallest possible number of fixed points would be achieved when each fixed point class has only 1 point. Or zero points.

Back to $M F(f)$:
The smallest possible number of fixed points would be achieved when each fixed point class has only 1 point. Or zero points.

How can we know if a class can be totally removed by a homotopy?

Back to $M F(f)$:
The smallest possible number of fixed points would be achieved when each fixed point class has only 1 point. Or zero points.

How can we know if a class can be totally removed by a homotopy? The fixed point index.

Back to $M F(f)$:
The smallest possible number of fixed points would be achieved when each fixed point class has only 1 point. Or zero points.

How can we know if a class can be totally removed by a homotopy? The fixed point index.

A Nielsen class is called essential if its total fixed point index sum is nonzero.

Back to $M F(f)$:
The smallest possible number of fixed points would be achieved when each fixed point class has only 1 point. Or zero points.

How can we know if a class can be totally removed by a homotopy? The fixed point index.

A Nielsen class is called essential if its total fixed point index sum is nonzero. These ones cannot be made empty by homotopies.

Back to $M F(f)$:
The smallest possible number of fixed points would be achieved when each fixed point class has only 1 point. Or zero points.

How can we know if a class can be totally removed by a homotopy? The fixed point index.

A Nielsen class is called essential if its total fixed point index sum is nonzero. These ones cannot be made empty by homotopies.

The number of essential fixed point classes is called the Nielsen number $N(f)$.

Back to $M F(f)$:
The smallest possible number of fixed points would be achieved when each fixed point class has only 1 point. Or zero points.

How can we know if a class can be totally removed by a homotopy? The fixed point index.

A Nielsen class is called essential if its total fixed point index sum is nonzero. These ones cannot be made empty by homotopies.

The number of essential fixed point classes is called the Nielsen number $N(f)$.

Automatically

$$
N(f) \leq M F(f)
$$

Let's do some simple examples.

Let's do some simple examples. Selfmaps on the circle.

Let's do some simple examples. Selfmaps on the circle.

Since $N(f)$ is homotopy invariant, the only relevant information is the degree of our selfmap.

Let's do some simple examples. Selfmaps on the circle.

Since $N(f)$ is homotopy invariant, the only relevant information is the degree of our selfmap.

Any degree d map can be changed by homotopy to $f(z)=z^{d}$, which has $|1-d|$ fixed points.

Let's do some simple examples. Selfmaps on the circle.

Since $N(f)$ is homotopy invariant, the only relevant information is the degree of our selfmap.

Any degree d map can be changed by homotopy to $f(z)=z^{d}$, which has $|1-d|$ fixed points.

These fixed points each have the same index ± 1, so $L(f)= \pm(1-d)$

What about the Reidemeister classes?

What about the Reidemeister classes?

For the circle, $\pi_{1}=\mathbb{Z}$.

What about the Reidemeister classes?

For the circle, $\pi_{1}=\mathbb{Z}$. When are two numbers twisted-conjugate?

What about the Reidemeister classes?

For the circle, $\pi_{1}=\mathbb{Z}$. When are two numbers twisted-conjugate?

For $x, y \in \mathbb{Z}$, we have $[x]=[y]$ iff there is some z with

$$
x=-z+y+f_{\#}(z)
$$

What about the Reidemeister classes?

For the circle, $\pi_{1}=\mathbb{Z}$. When are two numbers twisted-conjugate?

For $x, y \in \mathbb{Z}$, we have $[x]=[y]$ iff there is some z with

$$
x=-z+y+f_{\#}(z)=-z+y+d z
$$

What about the Reidemeister classes?

For the circle, $\pi_{1}=\mathbb{Z}$. When are two numbers twisted-conjugate?

For $x, y \in \mathbb{Z}$, we have $[x]=[y]$ iff there is some z with

$$
x=-z+y+f_{\#}(z)=-z+y+d z=y-(1-d) z
$$

What about the Reidemeister classes?

For the circle, $\pi_{1}=\mathbb{Z}$. When are two numbers twisted-conjugate?

For $x, y \in \mathbb{Z}$, we have $[x]=[y]$ iff there is some z with

$$
x=-z+y+f_{\#}(z)=-z+y+d z=y-(1-d) z
$$

So $[x]=[y]$ iff $x=y \bmod (1-d)$.

What about the Reidemeister classes?

For the circle, $\pi_{1}=\mathbb{Z}$. When are two numbers twisted-conjugate?

For $x, y \in \mathbb{Z}$, we have $[x]=[y]$ iff there is some z with

$$
x=-z+y+f_{\#}(z)=-z+y+d z=y-(1-d) z
$$

So $[x]=[y]$ iff $x=y \bmod (1-d)$.

So $\mathcal{R}(f)=\mathbb{Z}_{|1-d|}$.

Recall we had $|1-d|$ fixed points of the same index, and it's easy to show that they all have different Reidemeister classes.

Recall we had $|1-d|$ fixed points of the same index, and it's easy to show that they all have different Reidemeister classes.

So we have $N(f)=|1-d|$, and also $M F(f)=|1-d|$ since $f(z)=z^{d}$ has $|1-d|$ fixed points.

Recall we had $|1-d|$ fixed points of the same index, and it's easy to show that they all have different Reidemeister classes.

So we have $N(f)=|1-d|$, and also $M F(f)=|1-d|$ since $f(z)=z^{d}$ has $|1-d|$ fixed points.

So the Nielsen theory of the circle is easy.

What about tori?

What about tori?

What about tori?

Tori Nielsen

There is a similar formula for maps on tori by Brooks, Brown, Pak, Taylor (1975).

There is a similar formula for maps on tori by Brooks, Brown, Pak, Taylor (1975).

We view the n-torus as $\mathbb{R}^{n} / \mathbb{Z}^{n}$.

There is a similar formula for maps on tori by Brooks, Brown, Pak, Taylor (1975).

We view the n-torus as $\mathbb{R}^{n} / \mathbb{Z}^{n}$.

A map on the n-torus can be "linearized" by homotopy into a $n \times n$ matrix A with entries in \mathbb{Z}.

There is a similar formula for maps on tori by Brooks, Brown, Pak, Taylor (1975).

We view the n-torus as $\mathbb{R}^{n} / \mathbb{Z}^{n}$.

A map on the n-torus can be "linearized" by homotopy into a $n \times n$ matrix A with entries in \mathbb{Z}.

They showed that this linear map has $|\operatorname{det}(I-A)|$ fixed points.

There is a similar formula for maps on tori by Brooks, Brown, Pak, Taylor (1975).

We view the n-torus as $\mathbb{R}^{n} / \mathbb{Z}^{n}$.

A map on the n-torus can be "linearized" by homotopy into a $n \times n$ matrix A with entries in \mathbb{Z}.

They showed that this linear map has $|\operatorname{det}(I-A)|$ fixed points.

Further, these are all in different classes, and they all have the same index ± 1.

So on tori, we have $L(f)= \pm \operatorname{det}(I-A)$ and $N(f)=|\operatorname{det}(I-A)|$.

So on tori, we have $L(f)= \pm \operatorname{det}(I-A)$ and $N(f)=|\operatorname{det}(I-A)|$.

Some similar results are possible on nilmanifolds.

So on tori, we have $L(f)= \pm \operatorname{det}(I-A)$ and $N(f)=|\operatorname{det}(I-A)|$.

Some similar results are possible on nilmanifolds.

These are quotients of a nilpotent Lie group by a discrete set.

So on tori, we have $L(f)= \pm \operatorname{det}(I-A)$ and $N(f)=|\operatorname{det}(I-A)|$.

Some similar results are possible on nilmanifolds.

These are quotients of a nilpotent Lie group by a discrete set. (so tori are nilmanifolds)

So on tori, we have $L(f)= \pm \operatorname{det}(I-A)$ and $N(f)=|\operatorname{det}(I-A)|$.

Some similar results are possible on nilmanifolds.

These are quotients of a nilpotent Lie group by a discrete set. (so tori are nilmanifolds)

Nilmanifolds allow a similar linearization of maps, and good formulas for Nielsen theory result. (Anosov, Fadell \& Husseini 1985)

The results on nilmanifolds and solvmanifolds use some general properties of Nielsen theory on fibrations.

The results on nilmanifolds and solvmanifolds use some general properties of Nielsen theory on fibrations.

Consider a fibration $F \rightarrow E \rightarrow B$ and a fiber map $f: E \rightarrow E$ with

$$
\begin{array}{rlr}
F & E \longrightarrow B \\
\bar{f} \downarrow \longrightarrow & f \downarrow & f_{b} \downarrow \\
F \longrightarrow B \longrightarrow B
\end{array}
$$

The results on nilmanifolds and solvmanifolds use some general properties of Nielsen theory on fibrations.

Consider a fibration $F \rightarrow E \rightarrow B$ and a fiber map $f: E \rightarrow E$ with

$$
\begin{array}{rlr}
F & E \longrightarrow B \\
\bar{f} \downarrow & f \downarrow \\
F \longrightarrow E \longrightarrow
\end{array}
$$

Brown (1967) looked at this setting.

The results on nilmanifolds and solvmanifolds use some general properties of Nielsen theory on fibrations.

Consider a fibration $F \rightarrow E \rightarrow B$ and a fiber map $f: E \rightarrow E$ with

$$
\begin{array}{rl}
F & \longrightarrow B \\
\bar{f} \downarrow & f \downarrow \\
F & f_{b} \downarrow \\
F & B \longrightarrow B
\end{array}
$$

Brown (1967) looked at this setting. When is there a product formula like

$$
N(f) \stackrel{?}{=} N(\bar{f}) N\left(f_{b}\right)
$$

For cartesian products, this "naive product formula" was already known for a long time for $L(f)$ and $\operatorname{ind}(f, x)$.

For cartesian products, this "naive product formula" was already known for a long time for $L(f)$ and ind (f, x). Easy to do it for $N(f)$.

For cartesian products, this "naive product formula" was already known for a long time for $L(f)$ and $\operatorname{ind}(f, x)$. Easy to do it for $N(f)$.

For general fibrations, the product formula is not always satisfied.

For cartesian products, this "naive product formula" was already known for a long time for $L(f)$ and ind (f, x). Easy to do it for $N(f)$.

For general fibrations, the product formula is not always satisfied.

In 1981 You gave necessary and sufficient conditions for the formula to hold.

For cartesian products, this "naive product formula" was already known for a long time for $L(f)$ and $\operatorname{ind}(f, x)$. Easy to do it for $N(f)$.

For general fibrations, the product formula is not always satisfied.

In 1981 You gave necessary and sufficient conditions for the formula to hold.

The conditions are a bit complicated

For cartesian products, this "naive product formula" was already known for a long time for $L(f)$ and $\operatorname{ind}(f, x)$. Easy to do it for $N(f)$.

For general fibrations, the product formula is not always satisfied.

In 1981 You gave necessary and sufficient conditions for the formula to hold.

The conditions are a bit complicated, but fibrations over tori behave very nicely.

For cartesian products, this "naive product formula" was already known for a long time for $L(f)$ and $\operatorname{ind}(f, x)$. Easy to do it for $N(f)$.

For general fibrations, the product formula is not always satisfied.

In 1981 You gave necessary and sufficient conditions for the formula to hold.

The conditions are a bit complicated, but fibrations over tori behave very nicely.

See Heath's talk for more on fiber (fibre) methods.

A major theme in Nielsen theory has been:

A major theme in Nielsen theory has been: Choose a category of spaces and selfmaps, and try to compute the Nielsen number.

A major theme in Nielsen theory has been: Choose a category of spaces and selfmaps, and try to compute the Nielsen number.

Surfaces have been a major topic.

A major theme in Nielsen theory has been: Choose a category of spaces and selfmaps, and try to compute the Nielsen number.

Surfaces have been a major topic. (Hart mini-lecture, Gonçalves later today)

A major theme in Nielsen theory has been: Choose a category of spaces and selfmaps, and try to compute the Nielsen number.

Surfaces have been a major topic. (Hart mini-lecture, Gonçalves later today)

The geometrization theorem has allowed new techniques on 3-manifolds according to their geometries.

A major theme in Nielsen theory has been: Choose a category of spaces and selfmaps, and try to compute the Nielsen number.

Surfaces have been a major topic. (Hart mini-lecture, Gonçalves later today)

The geometrization theorem has allowed new techniques on 3-manifolds according to their geometries. (Wong, later today)

Methods for computation are reckoned to be successful when $N(f)$ can be reduced to calculations of $L(f)$ or algebraic calculations of the Reidemeister classes.

Methods for computation are reckoned to be successful when $N(f)$ can be reduced to calculations of $L(f)$ or algebraic calculations of the Reidemeister classes.

In many cases $N(f)$ can be reduced to $L(f)$ and $R(f)=\# \mathcal{R}(f)$.

Methods for computation are reckoned to be successful when $N(f)$ can be reduced to calculations of $L(f)$ or algebraic calculations of the Reidemeister classes.

In many cases $N(f)$ can be reduced to $L(f)$ and $R(f)=\# \mathcal{R}(f)$. (The Reidemeister number)

Methods for computation are reckoned to be successful when $N(f)$ can be reduced to calculations of $L(f)$ or algebraic calculations of the Reidemeister classes.

In many cases $N(f)$ can be reduced to $L(f)$ and $R(f)=\# \mathcal{R}(f)$. (The Reidemeister number)

This is true for a large class of spaces called Jiang spaces, which include:

Methods for computation are reckoned to be successful when $N(f)$ can be reduced to calculations of $L(f)$ or algebraic calculations of the Reidemeister classes.

In many cases $N(f)$ can be reduced to $L(f)$ and $R(f)=\# \mathcal{R}(f)$. (The Reidemeister number)

This is true for a large class of spaces called Jiang spaces, which include:

- Lie groups

Methods for computation are reckoned to be successful when $N(f)$ can be reduced to calculations of $L(f)$ or algebraic calculations of the Reidemeister classes.

In many cases $N(f)$ can be reduced to $L(f)$ and $R(f)=\# \mathcal{R}(f)$. (The Reidemeister number)

This is true for a large class of spaces called Jiang spaces, which include:

- Lie groups, topological groups

Methods for computation are reckoned to be successful when $N(f)$ can be reduced to calculations of $L(f)$ or algebraic calculations of the Reidemeister classes.

In many cases $N(f)$ can be reduced to $L(f)$ and $R(f)=\# \mathcal{R}(f)$. (The Reidemeister number)

This is true for a large class of spaces called Jiang spaces, which include:

- Lie groups, topological groups, H-spaces

Methods for computation are reckoned to be successful when $N(f)$ can be reduced to calculations of $L(f)$ or algebraic calculations of the Reidemeister classes.

In many cases $N(f)$ can be reduced to $L(f)$ and $R(f)=\# \mathcal{R}(f)$. (The Reidemeister number)

This is true for a large class of spaces called Jiang spaces, which include:

- Lie groups, topological groups, H-spaces
- generalized lens spaces

Methods for computation are reckoned to be successful when $N(f)$ can be reduced to calculations of $L(f)$ or algebraic calculations of the Reidemeister classes.

In many cases $N(f)$ can be reduced to $L(f)$ and $R(f)=\# \mathcal{R}(f)$. (The Reidemeister number)

This is true for a large class of spaces called Jiang spaces, which include:

- Lie groups, topological groups, H-spaces
- generalized lens spaces
- simply connected spaces

Methods for computation are reckoned to be successful when $N(f)$ can be reduced to calculations of $L(f)$ or algebraic calculations of the Reidemeister classes.

In many cases $N(f)$ can be reduced to $L(f)$ and $R(f)=\# \mathcal{R}(f)$. (The Reidemeister number)

This is true for a large class of spaces called Jiang spaces, which include:

- Lie groups, topological groups, H-spaces
- generalized lens spaces
- simply connected spaces
- quotients of Lie groups by finite subgroups

Methods for computation are reckoned to be successful when $N(f)$ can be reduced to calculations of $L(f)$ or algebraic calculations of the Reidemeister classes.

In many cases $N(f)$ can be reduced to $L(f)$ and $R(f)=\# \mathcal{R}(f)$. (The Reidemeister number)

This is true for a large class of spaces called Jiang spaces, which include:

- Lie groups, topological groups, H-spaces
- generalized lens spaces
- simply connected spaces
- quotients of Lie groups by finite subgroups

Unfortunately Jiang spaces all have π_{1} abelian.

Some other spaces are still "weakly Jiang", which means that when $L(f)=0$ we have $N(f)=0$, and otherwise $N(f)=R(f)$.

Some other spaces are still "weakly Jiang", which means that when $L(f)=0$ we have $N(f)=0$, and otherwise $N(f)=R(f)$.

In these cases, the geometry of $\operatorname{Fix}(f)$ is very closely tied to the algebra of $\mathcal{R}(f)$.

Some other spaces are still "weakly Jiang", which means that when $L(f)=0$ we have $N(f)=0$, and otherwise $N(f)=R(f)$.

In these cases, the geometry of $\operatorname{Fix}(f)$ is very closely tied to the algebra of $\mathcal{R}(f)$.

For some spaces this is known to be impossible.

Some other spaces are still "weakly Jiang", which means that when $L(f)=0$ we have $N(f)=0$, and otherwise $N(f)=R(f)$.

In these cases, the geometry of $\operatorname{Fix}(f)$ is very closely tied to the algebra of $\mathcal{R}(f)$.

For some spaces this is known to be impossible.

Any space such that π_{1} has R_{∞} property cannot be a weakly Jiang space.

Some other spaces are still "weakly Jiang", which means that when $L(f)=0$ we have $N(f)=0$, and otherwise $N(f)=R(f)$.

In these cases, the geometry of $\operatorname{Fix}(f)$ is very closely tied to the algebra of $\mathcal{R}(f)$.

For some spaces this is known to be impossible.

Any space such that π_{1} has R_{∞} property cannot be a weakly Jiang space. (This isn't quite true)

So far we have $L(f)$ from 1926, and $N(f)$ from 1927, the index and Lefschetz-Hopf theorem in 1929.

So far we have $L(f)$ from 1926, and $N(f)$ from 1927, the index and Lefschetz-Hopf theorem in 1929. This is the beginning of the " 85 years".

So far we have $L(f)$ from 1926, and $N(f)$ from 1927, the index and Lefschetz-Hopf theorem in 1929. This is the beginning of the " 85 years".

These two invariants were combined in a clever way by Reidemeister and Wecken:

So far we have $L(f)$ from 1926, and $N(f)$ from 1927, the index and Lefschetz-Hopf theorem in 1929. This is the beginning of the " 85 years".

These two invariants were combined in a clever way by Reidemeister and Wecken:

Let's do the Lefschetz trace:

$$
\sum_{q}(-1)^{q} \operatorname{tr}\left(f_{q}: C_{q}(X) \rightarrow C_{q}(X)\right)
$$

So far we have $L(f)$ from 1926, and $N(f)$ from 1927, the index and Lefschetz-Hopf theorem in 1929. This is the beginning of the " 85 years".

These two invariants were combined in a clever way by Reidemeister and Wecken:

Let's do the Lefschetz trace:

$$
\sum_{q}(-1)^{q} \operatorname{tr}\left(f_{q}: C_{q}(X) \rightarrow C_{q}(X)\right)
$$

but do it in \widetilde{X} instead of X.
\widetilde{X} has the same simplicial structure as X, only every simplex has copies parameterized by π_{1}.
\widetilde{X} has the same simplicial structure as X, only every simplex has copies parameterized by π_{1}.

So we can consider $C_{q}(\widetilde{X})$ as the same as $C_{q}(X)$, only allowing coefficients from $\mathbb{Z} \pi$ instead of \mathbb{Z}.
\widetilde{X} has the same simplicial structure as X, only every simplex has copies parameterized by π_{1}.

So we can consider $C_{q}(\widetilde{X})$ as the same as $C_{q}(X)$, only allowing coefficients from $\mathbb{Z} \pi$ instead of \mathbb{Z}.

Then we can write $\widetilde{f}_{q}: C_{q}(\widetilde{X}) \rightarrow C_{q}(\widetilde{X})$ as a matrix with entries in $\mathbb{Z} \pi$
\widetilde{X} has the same simplicial structure as X, only every simplex has copies parameterized by π_{1}.

So we can consider $C_{q}(\widetilde{X})$ as the same as $C_{q}(X)$, only allowing coefficients from $\mathbb{Z} \pi$ instead of \mathbb{Z}.

Then we can write $\widetilde{f}_{q}: C_{q}(\widetilde{X}) \rightarrow C_{q}(\widetilde{X})$ as a matrix with entries in $\mathbb{Z} \pi$, and we can do

$$
\operatorname{tr}\left(\widetilde{f}_{q}: C_{q}(\widetilde{X}) \rightarrow C_{q}(\widetilde{X})\right) \in \mathbb{Z} \pi
$$

Reidemeister defined:

$$
R T(\widetilde{f})=\rho\left(\sum_{q}(-1)^{q} \operatorname{tr}\left(\widetilde{f}_{q}: C_{q}(\widetilde{X}) \rightarrow C_{q}(\widetilde{X})\right)\right)
$$

now called the Reidemeister trace or generalized Lefschetz number.

Reidemeister defined:

$$
R T(\widetilde{f})=\rho\left(\sum_{q}(-1)^{q} \operatorname{tr}\left(\widetilde{f}_{q}: C_{q}(\widetilde{X}) \rightarrow C_{q}(\widetilde{X})\right)\right)
$$

now called the Reidemeister trace or generalized Lefschetz number.

Here $\rho: \mathbb{Z} \pi \rightarrow \mathbb{Z} \mathcal{R}(f)$ puts group elements into Reidemeister classes.

In an example, this $R T(\widetilde{f})$ would look something like:

$$
R T(\widetilde{f})=2[\gamma]-3[\sigma]+1[e]
$$

In an example, this $R T(\widetilde{f})$ would look something like:

$$
R T(\tilde{f})=2[\gamma]-3[\sigma]+1[e]
$$

Which indicates the fixed point class with Reidemeister class $[\gamma]$ has index sum 2,

In an example, this $R T(\widetilde{f})$ would look something like:

$$
R T(\tilde{f})=2[\gamma]-3[\sigma]+1[e]
$$

Which indicates the fixed point class with Reidemeister class $[\gamma]$ has index sum 2, the one with Reidemeister class $[\sigma]$ has index sum -3 ,

In an example, this $R T(\widetilde{f})$ would look something like:

$$
R T(\widetilde{f})=2[\gamma]-3[\sigma]+1[e]
$$

Which indicates the fixed point class with Reidemeister class $[\gamma]$ has index sum 2, the one with Reidemeister class $[\sigma]$ has index sum -3 , the one with class [e] has index sum 1,

In an example, this $R T(\widetilde{f})$ would look something like:

$$
R T(\widetilde{f})=2[\gamma]-3[\sigma]+1[e]
$$

Which indicates the fixed point class with Reidemeister class $[\gamma]$ has index sum 2, the one with Reidemeister class $[\sigma$] has index sum -3 , the one with class [e] has index sum 1 , and all others have index 0 .

In an example, this $R T(\widetilde{f})$ would look something like:

$$
R T(\widetilde{f})=2[\gamma]-3[\sigma]+1[e]
$$

Which indicates the fixed point class with Reidemeister class $[\gamma]$ has index sum 2, the one with Reidemeister class $[\sigma$] has index sum -3 , the one with class [e] has index sum 1 , and all others have index 0 .

Thus $L(f)=2-3+1=0$, and $N(f)=3$.

In an example, this $R T(\widetilde{f})$ would look something like:

$$
R T(\tilde{f})=2[\gamma]-3[\sigma]+1[e]
$$

Which indicates the fixed point class with Reidemeister class $[\gamma]$ has index sum 2, the one with Reidemeister class $[\sigma$] has index sum -3 , the one with class [e] has index sum 1 , and all others have index 0 .

Thus $L(f)=2-3+1=0$, and $N(f)=3$.
In general, the sum of the coefficients in $R(\widetilde{f})$ is $L(f)$, and the number of nonzero terms is $N(f)$.

In an example, this $R T(\widetilde{f})$ would look something like:

$$
R T(\tilde{f})=2[\gamma]-3[\sigma]+1[e]
$$

Which indicates the fixed point class with Reidemeister class $[\gamma]$ has index sum 2, the one with Reidemeister class $[\sigma$] has index sum -3 , the one with class [e] has index sum 1 , and all others have index 0 .

Thus $L(f)=2-3+1=0$, and $N(f)=3$.

In general, the sum of the coefficients in $R(\widetilde{f})$ is $L(f)$, and the number of nonzero terms is $N(f)$.

The trace formula often makes this easily computable.

In an example, this $R T(\widetilde{f})$ would look something like:

$$
R T(\tilde{f})=2[\gamma]-3[\sigma]+1[e]
$$

Which indicates the fixed point class with Reidemeister class $[\gamma]$ has index sum 2, the one with Reidemeister class $[\sigma$] has index sum -3 , the one with class [e] has index sum 1 , and all others have index 0 .

Thus $L(f)=2-3+1=0$, and $N(f)=3$.

In general, the sum of the coefficients in $R(\widetilde{f})$ is $L(f)$, and the number of nonzero terms is $N(f)$.

The trace formula often makes this easily computable. (except for the ρ part)

Let's talk about

$$
N(f) \leq M F(f)
$$

Let's talk about

$$
N(f) \leq M F(f)
$$

When are they equal?

Let's talk about

$$
N(f) \leq M F(f)
$$

When are they equal?

Nielsen's original setting (1920s) was surfaces homeomorphisms, in which it's not clear if they are always equal

Let's talk about

$$
N(f) \leq M F(f)
$$

When are they equal?

Nielsen's original setting (1920s) was surfaces homeomorphisms, in which it's not clear if they are always equal, though Nielsen seems to have believed that they were.

Let's talk about

$$
N(f) \leq M F(f)
$$

When are they equal?

Nielsen's original setting (1920s) was surfaces homeomorphisms, in which it's not clear if they are always equal, though Nielsen seems to have believed that they were.

Wecken showed (1940s) that $N(f)=M F(f)$ for compact manifolds of dimension $\neq 2$.

Let's talk about

$$
N(f) \leq M F(f)
$$

When are they equal?

Nielsen's original setting (1920s) was surfaces homeomorphisms, in which it's not clear if they are always equal, though Nielsen seems to have believed that they were.

Wecken showed (1940s) that $N(f)=M F(f)$ for compact manifolds of dimension $\neq 2$.

This is called the Wecken Theorem.

Let's talk about

$$
N(f) \leq M F(f)
$$

When are they equal?

Nielsen's original setting (1920s) was surfaces homeomorphisms, in which it's not clear if they are always equal, though Nielsen seems to have believed that they were.

Wecken showed (1940s) that $N(f)=M F(f)$ for compact manifolds of dimension $\neq 2$.

This is called the Wecken Theorem.

Dimension 1 is easy,

Let's talk about

$$
N(f) \leq M F(f)
$$

When are they equal?
Nielsen's original setting (1920s) was surfaces homeomorphisms, in which it's not clear if they are always equal, though Nielsen seems to have believed that they were.

Wecken showed (1940s) that $N(f)=M F(f)$ for compact manifolds of dimension $\neq 2$.

This is called the Wecken Theorem.

Dimension 1 is easy, for dimension ≥ 3 there is enough "room" to deform $f(X)$ so that it intersects the diagonal Δ once for each essential class.

What about for polyhedra?

What about for polyhedra?

Shi (1966) proved that $N(f)=M F(f)$ for polyhedra with dimension ≥ 3 and no local separating points.

What about for polyhedra?

Shi (1966) proved that $N(f)=M F(f)$ for polyhedra with dimension ≥ 3 and no local separating points.

Jiang (1979) proved that $N(f)=M F(f)$ for any polyhedron without local separating points which is not a surface.

What about for polyhedra?

Shi (1966) proved that $N(f)=M F(f)$ for polyhedra with dimension ≥ 3 and no local separating points.

Jiang (1979) proved that $N(f)=M F(f)$ for any polyhedron without local separating points which is not a surface.

What about surfaces?

The Wecken issue for surfaces was also resolved by Jiang in early 1980s.

The Wecken issue for surfaces was also resolved by Jiang in early 1980s.

Until this time there was no known example with $N(f) \neq M F(f)$ on a surface.

The Wecken issue for surfaces was also resolved by Jiang in early 1980s.

Until this time there was no known example with $N(f) \neq M F(f)$ on a surface.

Jiang constructed a map on the pants surface with $N(f)=0$ and $M F(f)=2$.

The Wecken issue for surfaces was also resolved by Jiang in early 1980s.

Until this time there was no known example with $N(f) \neq M F(f)$ on a surface.

Jiang constructed a map on the pants surface with $N(f)=0$ and $M F(f)=2$.

In this example there are 2 fixed points in the same class of index +1 and -1 , so the class is not essential

The Wecken issue for surfaces was also resolved by Jiang in early 1980s.

Until this time there was no known example with $N(f) \neq M F(f)$ on a surface.

Jiang constructed a map on the pants surface with $N(f)=0$ and $M F(f)=2$.

In this example there are 2 fixed points in the same class of index +1 and -1 , so the class is not essential, but Jiang showed that $M F(f)=2$.

The Wecken issue for surfaces was also resolved by Jiang in early 1980s.

Until this time there was no known example with $N(f) \neq M F(f)$ on a surface.

Jiang constructed a map on the pants surface with $N(f)=0$ and $M F(f)=2$.

In this example there are 2 fixed points in the same class of index +1 and -1 , so the class is not essential, but Jiang showed that $M F(f)=2$.

The paper is Fixed points and braids (1984 \& 1985).

A very vague idea of why braids are important:

A very vague idea of why braids are important:

Consider a map with two fixed points, and we change the map by homotopy.

A very vague idea of why braids are important:

Consider a map with two fixed points, and we change the map by homotopy.

Let's use the pants surface P, and the homotopy itself is a map on $P \times[0,1]$.

This looks like:

This looks like:

This thing is called a "two strand braid on P".

This thing is called a "two strand braid on P ".

There is an algebraic theory for surface braids

This thing is called a "two strand braid on P ".

There is an algebraic theory for surface braids, using the "surface braid groups".

Surface braid groups have finite presentations with relators like in the classical braid groups

Surface braid groups have finite presentations with relators like in the classical braid groups, plus some relators depending on the topology of the surface.

Surface braid groups have finite presentations with relators like in the classical braid groups, plus some relators depending on the topology of the surface.

Jiang shows that in his example, removing the two fixed points would require an algebraic formula to hold in the surface braid group.

Surface braid groups have finite presentations with relators like in the classical braid groups, plus some relators depending on the topology of the surface.

Jiang shows that in his example, removing the two fixed points would require an algebraic formula to hold in the surface braid group.

Then he proves using the relations that this would be impossible.

Braid groups now play a big role in Nielsen theory (Ferrario's talk)

Braid groups now play a big role in Nielsen theory (Ferrario's talk)

Jiang showed that his example can be embedded to make non-Wecken maps on any surface of negative Euler characteristic.

Braid groups now play a big role in Nielsen theory (Ferrario's talk)

Jiang showed that his example can be embedded to make non-Wecken maps on any surface of negative Euler characteristic.

Several people asked whether $N(f)$ can be arbitrarily distant from $M F(f)$.

Braid groups now play a big role in Nielsen theory (Ferrario's talk)

Jiang showed that his example can be embedded to make non-Wecken maps on any surface of negative Euler characteristic.

Several people asked whether $N(f)$ can be arbitrarily distant from $M F(f)$. Kelly showed that the difference can be arbitrarily large for any hyperbolic surface.

Some related questions:

Some related questions:

- If we choose a surface selfmap "at random", is it likely that $N(f)=M F(f)$? (S.W. Kim's talk)

Some related questions:

- If we choose a surface selfmap "at random", is it likely that $N(f)=M F(f)$? (S.W. Kim's talk)
- If X is a smooth manifold, can $N(f)=M F(f)$ be realized by a smooth map? (Jezierski's talk)

Some related questions:

- If we choose a surface selfmap "at random", is it likely that $N(f)=M F(f)$? (S.W. Kim's talk)
- If X is a smooth manifold, can $N(f)=M F(f)$ be realized by a smooth map? (Jezierski's talk)

By the way, the role of smoothness is another theme in several people's work.

Some related questions:

- If we choose a surface selfmap "at random", is it likely that $N(f)=M F(f)$? (S.W. Kim's talk)
- If X is a smooth manifold, can $N(f)=M F(f)$ be realized by a smooth map? (Jezierski's talk)

By the way, the role of smoothness is another theme in several people's work.

Does it matter when we restrict to smooth maps?

Some related questions:

- If we choose a surface selfmap "at random", is it likely that $N(f)=M F(f)$? (S.W. Kim's talk)
- If X is a smooth manifold, can $N(f)=M F(f)$ be realized by a smooth map? (Jezierski's talk)

By the way, the role of smoothness is another theme in several people's work.

Does it matter when we restrict to smooth maps? (for the original map, or the intermediate maps in a homotopy, etc)

Some related questions:

- If we choose a surface selfmap "at random", is it likely that $N(f)=M F(f)$? (S.W. Kim's talk)
- If X is a smooth manifold, can $N(f)=M F(f)$ be realized by a smooth map? (Jezierski's talk)

By the way, the role of smoothness is another theme in several people's work.

Does it matter when we restrict to smooth maps? (for the original map, or the intermediate maps in a homotopy, etc)

Sometimes it does, sometimes it doesn't. (Khamsemanan's talk)

That's all for now!

