
85 years of Nielsen theory: Periodic Points

P. Christopher Staecker

Fairfield University, Fairfield CT

Nielsen Theory and Related Topics 2013

Staecker (Fairfield U.) Periodic points 1 / 46



Fixed point theory is about f (x) = x .

We want to generalize the ideas to f n(x) = x for various n. These are
periodic points with period n. If this n is minimal, we say x has “minimal
period n”.

A very simplistic approach: A periodic point with period n is a fixed point
of f n.

So we can use L(f n) and N(f n) to count periodic points, and

N(f n) ≤ MF (f n).

This is all true, but not quite what we want.
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Why isn’t this good enough?

Consider S1 ⊂ C, and f : S1 → S1 by f (x) = x , the complex conjugate.

Then f 2(x) = x for all x , so f 2 is the degree 1 map on S1, so
L(f 2) = |1− 1| = 0 and N(f 2) = |1− 1| = 0.

BUT: f : S1 → S1 is degree −1, so N(f ) = L(f ) = 2 so all maps
homotopic to f have at least 2 fixed points, and thus at least 2 periodic
points of period 2.

So N(f 2) = 0 even though all maps homotopic to f have at least 2
periodic points of period 2.
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What happened?

The problem is that there’s a difference between:

MF (f 2) = min{# Fix(g) | g ' f 2}

and
min{# Fix(g2) | g ' f }

In our example, MF (f 2) = 0 but the second quantity is ≥ 2.

In other words, when we look at f n(x) = x , we should only be changing f
by homotopy, not f n.
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There are more subtleties: if we know ind(f , x), what does this tell us
about ind(f n, x)?

Not much! In our example ind(f , x) = 1 and ind(f 2, x) = 0.

The sequence of fixed point indices (ind(f , x), ind(f 2, x), . . . ) can be fairly
unpredictable.

Even the sequence of Leftchetz numbers (L(f ), L(f 2), . . . ) has a
complicated structure.

This was studied by Dold (1983)
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Theorem
(Dold) For each n, we have∑

k|n
µ(k)L(f n/k) = 0 mod n

where µ is the Möbius function.

The above equations are called the Dold congruences, and they are also
satisfied by the sequence of indices.

In fact, Dold proved a converse:

Theorem
(Dold) Let (in) be a sequence which satisfies the Dold congruences. Then
there is a selfmap of an ENR such that (in) is the sequence of fixed point
indices.

Lots more work on this followed.
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The above equations are called the Dold congruences, and they are also
satisfied by the sequence of indices.

In fact, Dold proved a converse:

Theorem
(Dold) Let (in) be a sequence which satisfies the Dold congruences. Then
there is a selfmap of an ENR such that (in) is the sequence of fixed point
indices.

Lots more work on this followed.

Staecker (Fairfield U.) Periodic points 6 / 46



Theorem
(Dold) For each n, we have∑

k|n
µ(k)L(f n/k) = 0 mod n

where µ is the Möbius function.
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By the way, the asymptotic behavior of the sequences of Lefschetz and
Nielsen numbers are also studied.

We can use the sequences to define zeta functions (Dugardein’s talk)

Jiang also defines the asymptotic Nielsen number N∞(f ), the exponential
growth rate of the sequence of Nielsen numbers.

Jiang showed log N∞(f ) is a lower bound for the topological entropy of f .
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Summary:

The behavior of the sequences (L(f n)), (N(f n)), (ind(f n, x)) is
complicated and interesting.

We’ll focus mainly on getting information about specific iterations. Not
the whole sequences.
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This theory is not 85 years old-

the basics are by Jiang, in his 1983 book.

Jiang’s work was based on unpublished papers by Halpern from the 1970s.

There are two basic invariants, which J&M call the Nielsen-Jiang periodic
numbers:

I NPn(f ) counts the number of periodic points with minimal period n.
I NΦn(f ) counts the number of all periodic points with period n.
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We’ll discuss the definitions of NPn(f ) and NΦn(f ), along with some basic
properties and relations between them.

For example, for any map we have:

#{ points with period n } =
∑
k|n

#{ points with minimal period k}

So we could hope that

NΦn(f )
?
=

∑
k|n

NPn(f ).

This is true for nice spaces, but not always.
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The definitions for NPn and NΦn are a bit subtle.

As usual we’ll use the Reidemeister classes and the fixed point index, but
what about minimality of periods?

It turns out this can be approached algebraically using the Reidemeister
classes.
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For any map there is an inclusion Fix(f k) ⊂ Fix(f n) when k divides n.

We want something like this for Reidemeister classes.

If x ∈ Fix(f k) has Reidemeister class α ∈ R(f k), what is the Reidemeister
class of x when we view x ∈ Fix(f n)?

It can’t be “the same”, since R(f k) and R(f n) are different groups.

For example on the circle, if f is degree d , then R(f k) = Z|1−dk | and
R(f n) = Z|1−dn|.

So what we need is a map R(f k)→ R(f n) which respects the periods
correctly.
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Here is the map ιk,n : R(f k)→ R(f n), called the boost from level k to
level n.

For α ∈ π1 define:

ιk,n([α]k) = [α f k
#(α) f 2k

# (α) . . . f n−k
# (α)]n.

The superscript in [α]k just reminds us that this is the Reidemeister class
of α in R(f k).

Staecker (Fairfield U.) Periodic points 13 / 46



Here is the map ιk,n : R(f k)→ R(f n), called the boost from level k to
level n.

For α ∈ π1 define:

ιk,n([α]k) = [α f k
#(α) f 2k

# (α) . . . f n−k
# (α)]n.

The superscript in [α]k just reminds us that this is the Reidemeister class
of α in R(f k).

Staecker (Fairfield U.) Periodic points 13 / 46



Here is the map ιk,n : R(f k)→ R(f n), called the boost from level k to
level n.

For α ∈ π1 define:

ιk,n([α]k) = [α f k
#(α) f 2k

# (α) . . . f n−k
# (α)]n.

The superscript in [α]k just reminds us that this is the Reidemeister class
of α in R(f k).

Staecker (Fairfield U.) Periodic points 13 / 46



The boost ιk,n respects periods of points:

If x ∈ Fix(f k) has Reidemeister class [α]k ∈ R(f k), then x ∈ Fix(f n) has
Reidemeister class ιk,n([α]k) ∈ R(f n).

The boost also composes nicely.

When m | k | n, we have

ιm,n = ιk,n ◦ ιm,k
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When [α]n is in the image of some ιk,n for k | n, we say that [α]n is
reducible.

Otherwise it’s irreducible.

This is the algebraic version of some point having nonminimal period.

If we want a Nielsen number for minimal periods, it might be good to
define NPn(f ) as

# of essential irreducible classes of R(f n)

This is not quite good enough.
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The periodic points live in orbits:

x ∈ Fix(f n) has {x , f (x), . . . , f n−1(x)}.

When x has minimal period n, the points of the orbit are all distinct, and
they all have minimal period n.

It turns out there are times when x ∈ Fix(f n) has the same Reidemeister
class as f (x) ∈ Fix(f n).

Actually it’s possible that every point in the orbit of x has the same
Reidemeister class as x .
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x ∈ Fix(f n) has {x , f (x), . . . , f n−1(x)}.

Possible to have n distinct periodic points with minimal period n, but only
one Reidemeister class containing them all.

In that case, R(f n) has only 1 essential irreducible class, but n different
points with minimal period n.

So the number of essential irreducible classes is not a lower bound for the
number of points with minimal period n.

We need to be careful about the orbits.
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Luckily, we can approach the orbits algebraically too.

For a class [α]n ∈ R(f n), the Reidemeister orbit of α is:

{[α]n, [f#(α)]n, . . . , [f n−1
# (α)]n}.

An orbit is reducible if it contains a reducible class, and essential if it
contains an essential class.
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The invariant we’re looking for is:

NPn(f ) = (# essential irreducible orbits in R(f n) ) · n

Times n because each orbit indicates n points of minimal period n.

Once you show all of this is well-defined, it’s not hard to show:

NPn(f ) ≤ min{#Pn(g) | g ' f }

where Pn is the set of periodic points with minimal period n.
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Let’s do an example on a circle.

On circles (and tori), things are well behaved:
I When f is degree d 6= 1, we have R(f n) = Z|1−dn| and all classes are

essential.
I All Reidemeister orbits at level n have n distinct classes.

NPn(f ) = (# essential irreducible orbits in R(f n) ) · n
= # of essential irreducible classes of R(f n)
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Let f : S1 → S1 be degree 4.

For NP1(f ): All classes at level 1 are irreducible, so

NP1(f ) = # of essential irreducible classes of R(f 1)

= # of essential classes of R(f ) = N(f ) = |1− 4| = 3.
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For NP2, we have R(f 2) = Z|1−42| = Z15.

All are essential, which are reducible? What’s the image of ι1,2?

ι1,2([α]1) = [α]2 + [f (α)]2 = [α] + 4[α] = 5[α].

So ι1,2 : Z3 → Z15 is multiplication by 5.

So in Z15, {0, 5, 10} are reducible, the other 12 are irreducible.

So NP2(f ) = 12.
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NP3 is similar.

R(f 3) = Z|1−43| = Z63.

ι1,3 = 1 + 4 + 42 = 21

There is no ι2,3.

So in Z63 the multiples of 21 are reducible.

So we have 3 reducible classes, so NP3(f ) = 63− 3 = 60.
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NP4 is a bit more interesting since we have 2 nontrivial boosts.

We have

ι1,4 = 1 + 4 + 42 + 43 = 85
ι2,4 = 1 + 42 = 17

So in R(f 4) = Z|1−44| = Z255, multiples of 85 and multiples of 17 are
reducible.

But 85 = 5 · 17, so really it’s just the multiples of 17 and 255 = 15 · 17, so
we have 15 reducible classes.

So NP4(f ) = 255− 15 = 240.
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This type of computation can be done pretty easily for tori

, extended to
nilmanifolds and some solvmanifolds by Heath & Keppelmann, late 1990s.

It turns out all these spaces have some very nice properties which make
these computations possible.

We’ve repeatedly used the fact that the Reidemeister orbits at level n
contain n distinct classes.

It’s also true for tori that ιk,n is injective (when L(f n) 6= 0). Then we
often don’t need to compute the map ιk,n exactly.
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What about NΦn(f )?

This is meant to be a lower bound for

min{# Fix(gn) | g ' f }

N(f n) is inadequate for this.

Our earlier example: complex conjugate on S1.
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f 2 is the degree 1 map on S1, so N(f 2) = |1− 1| = 0.

But N(f ) = 2 so all maps homotopic to f have at least 2 fixed points, and
thus at least 2 periodic points of period 2.

So N(f 2) = 0 even though all maps homotopic to f have at least 2
periodic points of period 2.

The issue here is that the 2 points of period 2 are an inessential class in
R(f 2), but they are preceded by an essential class in R(f ).

So really we need to count those as being essential.
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For a definition of NΦn(f ):

Given a Reidemeister orbit at level n, we need to consider all possible
reductions to see if it is preceded by an essential orbit at a lower level.

Each such preceding essential orbit contributes to NΦn(f ).

Specifically, a preceding essential orbit at level k should increase NΦn(f )
by k.
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We’ll need to look at the entire union⋃
k|n
OR(f k)

A set of orbits G is called a preceding [n-]system when every essential orbit
of the union reduces to something in G.

Every orbit has a depth: the lowest level to which it reduces.

G is a minimal preceding system if its depth sum is minimal.

Staecker (Fairfield U.) Periodic points 29 / 46



We’ll need to look at the entire union⋃
k|n
OR(f k)

A set of orbits G is called a preceding [n-]system when every essential orbit
of the union reduces to something in G.

Every orbit has a depth: the lowest level to which it reduces.

G is a minimal preceding system if its depth sum is minimal.

Staecker (Fairfield U.) Periodic points 29 / 46



We’ll need to look at the entire union⋃
k|n
OR(f k)

A set of orbits G is called a preceding [n-]system when every essential orbit
of the union reduces to something in G.

Every orbit has a depth: the lowest level to which it reduces.

G is a minimal preceding system if its depth sum is minimal.

Staecker (Fairfield U.) Periodic points 29 / 46



We’ll need to look at the entire union⋃
k|n
OR(f k)

A set of orbits G is called a preceding [n-]system when every essential orbit
of the union reduces to something in G.

Every orbit has a depth: the lowest level to which it reduces.

G is a minimal preceding system if its depth sum is minimal.

Staecker (Fairfield U.) Periodic points 29 / 46



Then NΦn(f ) is defined as:

NΦn(f ) =
∑
O∈G

d(O),

where d is the depth and G is any minimal preceding n-system.

So any preceding orbit at level k contributes k to the sum, which is what
we wanted.

Pretty complicated!
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If you’re lucky, you’ll be able to compute NΦn(f ) by other means.

For example,
NΦn(f )

?
=

∑
k|n

NPk(f )

Let’s talk about this.

We want to relate a preceding n-system to the total number of all
essential irreducible orbits.
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Any preceding n-system automatically contains every essential irreducible
orbit.

An essential irreducible orbit at level k has depth k since it’s irreducible.
So:

NΦn(f ) ≥
∑
k|n

(# essential irreducible orbits in R(f k) ) · k

So
NΦn(f ) ≥

∑
k|n

NPk(f ).

So half of our equality is always true. The other direction is not always
true.
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Consider the antipodal map on S2.

R(f k) = 1 for every k, since π1 is trivial.

So all classes at all levels reduce to level 1.

But the level 1 class is inessential because f is fixed point free.
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All classes reduce except the bottom inessential one.

(The even level
classes are essential)

So there is never any essential irreducible class, so NPn(f ) = 0 for all k.

But f 2 is the identity, so N(f 2) = 1, so any preceding system will contain
the class at level 1.

Thus NΦn(f ) = 1 but
∑

k|n NPk(f ) = 0.
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The issue here is that we had essential classes at level 2 reducing down to
inessential classes at level 1.

Such a class will be counted in NΦn(f ), but not in NPn(f ).

To get the summation formula, we require that this never happens.
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f is essentially reducible if the reduction of an essential class is essential.

Theorem
(Heath & You, 1992) If f is essentially reducible, then

NΦn(f ) =
∑
k|n

NPk(f ).

This makes NΦn much easier to compute.

The essential reducibility condition holds for all maps on tori and all nil
and solvmanifolds.
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So for nice spaces, NΦn(f ) can be computed in terms of NPk(f ).

But it seems reasonable that NPn(f ) could be computed in terms of
NΦn(f ) by inclusion-exclusion.

For example,

#P6(f ) = # Fix(f 6)−# Fix(f 3)−# Fix(f 2) + # Fix(f 1)

We “include” or “exclude” based on how exactly the levels divide one
another.
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This inclusion-exclusion idea actually works if we assume essential
reducibility.

Theorem
If f is essentially reducible, then

NPn(f ) =
∑

τ⊂p(n)
(−1)#τNΦn:τ (f ).

This is obtained directly by Möbius inversion of the previous theorem.
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There are several other identities based on stronger assumptions of
reducibility and other things.

Sometimes you can even express NΦn(f ) in terms of various N(f k).

In particular this is true for tori.
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Let’s talk about Wecken theorems.

Is it really true that NΦn(f ) = min{# Fix(gn) | g ' f }?

And NPn(f ) = min{#Pn(g) | g ' f }?

Probably we’ll need to assume manifolds of dimension 6= 2.
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For NΦn(f ), the theorem we need is:

Theorem
If X is a manifold of dimension 6= 2 and f is a selfmap, then there is some
map g ' f with

NΦn(f ) = # Fix(gn).

This was stated by Halpern in 1980 assuming that dim X ≥ 5. Called the
“Halpern conjecture.”

Proved in mid 2000s by Jezierski, for PL-manifolds, first for dim X ≥ 4,
then 3.

Realizing by a smooth map is different. (Jezierski’s talk today)
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What about NPn(f )? We want to say:

If X is a manifold of dimension 6= 2 and f is a selfmap, then there is some
map g ' f with

NPn(f ) = #Pn(g).

This is also true. (I think)
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A stronger Wecken property would be the following:

If X is a manifold of dimension 6= 2 and f is a selfmap, then there is some
map g ' f with

NΦn(f ) = #Fix(gn) for all n

This would be a “simultaneous Wecken theorem”. (Similarly for NPn)

For NΦn this is an open question.
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For NPn the simultaneous Wecken theorem does not hold.

Recall our example: the antipodal map on S2.

Here NPn(f ) = 0 for all n, since the class at level 1 is inessential, and all
classes at other levels reduce to it.

The simultaneous Wecken theorem would mean that all periodic points
could be removed simultaneously.
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In this example N(f ) = 0 but N(f 2) = 1 so all maps homotopic to f have
a periodic point of period 2.

This point could be of minimal period 2, or it could be a fixed point.

In any case, we cannot remove every periodic point of f simultaneously.
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That’s all for now!

Next time, coincidences.
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