85 years of Nielsen theory: Periodic Points

P. Christopher Staecker

Fairfield University, Fairfield CT

Nielsen Theory and Related Topics 2013

Fixed point theory is about $f(x)=x$.

Fixed point theory is about $f(x)=x$.

We want to generalize the ideas to $f^{n}(x)=x$ for various n.

Fixed point theory is about $f(x)=x$.

We want to generalize the ideas to $f^{n}(x)=x$ for various n. These are periodic points with period n.

Fixed point theory is about $f(x)=x$.

We want to generalize the ideas to $f^{n}(x)=x$ for various n. These are periodic points with period n. If this n is minimal, we say x has "minimal period $n "$.

Fixed point theory is about $f(x)=x$.

We want to generalize the ideas to $f^{n}(x)=x$ for various n. These are periodic points with period n. If this n is minimal, we say x has "minimal period $n "$.

A very simplistic approach:

Fixed point theory is about $f(x)=x$.

We want to generalize the ideas to $f^{n}(x)=x$ for various n. These are periodic points with period n. If this n is minimal, we say x has "minimal period $n "$.

A very simplistic approach: A periodic point with period n is a fixed point of f^{n}.

Fixed point theory is about $f(x)=x$.

We want to generalize the ideas to $f^{n}(x)=x$ for various n. These are periodic points with period n. If this n is minimal, we say x has "minimal period $n "$.

A very simplistic approach: A periodic point with period n is a fixed point of f^{n}.

So we can use $L\left(f^{n}\right)$ and $N\left(f^{n}\right)$ to count periodic points, and

$$
N\left(f^{n}\right) \leq M F\left(f^{n}\right)
$$

Fixed point theory is about $f(x)=x$.

We want to generalize the ideas to $f^{n}(x)=x$ for various n. These are periodic points with period n. If this n is minimal, we say x has "minimal period $n "$.

A very simplistic approach: A periodic point with period n is a fixed point of f^{n}.

So we can use $L\left(f^{n}\right)$ and $N\left(f^{n}\right)$ to count periodic points, and

$$
N\left(f^{n}\right) \leq M F\left(f^{n}\right)
$$

This is all true, but not quite what we want.

Why isn't this good enough?

Why isn't this good enough?

Consider $S^{1} \subset \mathbb{C}$, and $f: S^{1} \rightarrow S^{1}$ by $f(x)=\bar{x}$, the complex conjugate.

Why isn't this good enough?

Consider $S^{1} \subset \mathbb{C}$, and $f: S^{1} \rightarrow S^{1}$ by $f(x)=\bar{x}$, the complex conjugate.

Then $f^{2}(x)=x$ for all x, so f^{2} is the degree 1 map on S^{1}, so $L\left(f^{2}\right)=|1-1|=0$ and $N\left(f^{2}\right)=|1-1|=0$.

Why isn't this good enough?

Consider $S^{1} \subset \mathbb{C}$, and $f: S^{1} \rightarrow S^{1}$ by $f(x)=\bar{x}$, the complex conjugate.

Then $f^{2}(x)=x$ for all x, so f^{2} is the degree 1 map on S^{1}, so $L\left(f^{2}\right)=|1-1|=0$ and $N\left(f^{2}\right)=|1-1|=0$.

BUT:

Why isn't this good enough?

Consider $S^{1} \subset \mathbb{C}$, and $f: S^{1} \rightarrow S^{1}$ by $f(x)=\bar{x}$, the complex conjugate.

Then $f^{2}(x)=x$ for all x, so f^{2} is the degree 1 map on S^{1}, so $L\left(f^{2}\right)=|1-1|=0$ and $N\left(f^{2}\right)=|1-1|=0$.

BUT: $f: S^{1} \rightarrow S^{1}$ is degree -1 , so $N(f)=L(f)=2$ so all maps homotopic to f have at least 2 fixed points

Why isn't this good enough?

Consider $S^{1} \subset \mathbb{C}$, and $f: S^{1} \rightarrow S^{1}$ by $f(x)=\bar{x}$, the complex conjugate.

Then $f^{2}(x)=x$ for all x, so f^{2} is the degree 1 map on S^{1}, so $L\left(f^{2}\right)=|1-1|=0$ and $N\left(f^{2}\right)=|1-1|=0$.

BUT: $f: S^{1} \rightarrow S^{1}$ is degree -1 , so $N(f)=L(f)=2$ so all maps homotopic to f have at least 2 fixed points, and thus at least 2 periodic points of period 2.

Why isn't this good enough?

Consider $S^{1} \subset \mathbb{C}$, and $f: S^{1} \rightarrow S^{1}$ by $f(x)=\bar{x}$, the complex conjugate.

Then $f^{2}(x)=x$ for all x, so f^{2} is the degree 1 map on S^{1}, so $L\left(f^{2}\right)=|1-1|=0$ and $N\left(f^{2}\right)=|1-1|=0$.

BUT: $f: S^{1} \rightarrow S^{1}$ is degree -1 , so $N(f)=L(f)=2$ so all maps homotopic to f have at least 2 fixed points, and thus at least 2 periodic points of period 2.

So $N\left(f^{2}\right)=0$ even though all maps homotopic to f have at least 2 periodic points of period 2 .

What happened?

What happened?

The problem is that there's a difference between:

$$
M F\left(f^{2}\right)=\min \left\{\# \operatorname{Fix}(g) \mid g \simeq f^{2}\right\}
$$

and

$$
\min \left\{\# \operatorname{Fix}\left(g^{2}\right) \mid g \simeq f\right\}
$$

What happened?

The problem is that there's a difference between:

$$
M F\left(f^{2}\right)=\min \left\{\# \operatorname{Fix}(g) \mid g \simeq f^{2}\right\}
$$

and

$$
\min \left\{\# \operatorname{Fix}\left(g^{2}\right) \mid g \simeq f\right\}
$$

In our example, $\operatorname{MF}\left(f^{2}\right)=0$ but the second quantity is ≥ 2.

What happened?

The problem is that there's a difference between:

$$
M F\left(f^{2}\right)=\min \left\{\# \operatorname{Fix}(g) \mid g \simeq f^{2}\right\}
$$

and

$$
\min \left\{\# \operatorname{Fix}\left(g^{2}\right) \mid g \simeq f\right\}
$$

In our example, $\operatorname{MF}\left(f^{2}\right)=0$ but the second quantity is ≥ 2.

In other words, when we look at $f^{n}(x)=x$, we should only be changing f by homotopy

What happened?

The problem is that there's a difference between:

$$
M F\left(f^{2}\right)=\min \left\{\# \operatorname{Fix}(g) \mid g \simeq f^{2}\right\}
$$

and

$$
\min \left\{\# \operatorname{Fix}\left(g^{2}\right) \mid g \simeq f\right\}
$$

In our example, $\operatorname{MF}\left(f^{2}\right)=0$ but the second quantity is ≥ 2.

In other words, when we look at $f^{n}(x)=x$, we should only be changing f by homotopy, not f^{n}.

There are more subtleties: if we know ind (f, x), what does this tell us about ind $\left(f^{n}, x\right)$?

There are more subtleties: if we know ind (f, x), what does this tell us about ind $\left(f^{n}, x\right)$?

Not much!

There are more subtleties: if we know ind (f, x), what does this tell us about ind $\left(f^{n}, x\right)$?

Not much! In our example $\operatorname{ind}(f, x)=1$ and $\operatorname{ind}\left(f^{2}, x\right)=0$.

There are more subtleties: if we know ind (f, x), what does this tell us about ind $\left(f^{n}, x\right)$?

Not much! In our example $\operatorname{ind}(f, x)=1$ and $\operatorname{ind}\left(f^{2}, x\right)=0$.

The sequence of fixed point indices (ind $\left.(f, x), \operatorname{ind}\left(f^{2}, x\right), \ldots\right)$ can be fairly unpredictable.

There are more subtleties: if we know ind (f, x), what does this tell us about ind $\left(f^{n}, x\right)$?

Not much! In our example $\operatorname{ind}(f, x)=1$ and $\operatorname{ind}\left(f^{2}, x\right)=0$.

The sequence of fixed point indices (ind $\left.(f, x), \operatorname{ind}\left(f^{2}, x\right), \ldots\right)$ can be fairly unpredictable.

Even the sequence of Leftchetz numbers $\left(L(f), L\left(f^{2}\right), \ldots\right)$ has a complicated structure.

There are more subtleties: if we know ind (f, x), what does this tell us about ind $\left(f^{n}, x\right)$?

Not much! In our example $\operatorname{ind}(f, x)=1$ and $\operatorname{ind}\left(f^{2}, x\right)=0$.

The sequence of fixed point indices (ind $\left.(f, x), \operatorname{ind}\left(f^{2}, x\right), \ldots\right)$ can be fairly unpredictable.

Even the sequence of Leftchetz numbers $\left(L(f), L\left(f^{2}\right), \ldots\right)$ has a complicated structure.

This was studied by Dold (1983)

Theorem

(Dold) For each n, we have

$$
\sum_{k \mid n} \mu(k) L\left(f^{n / k}\right)=0 \quad \bmod n
$$

where μ is the Möbius function.

Theorem

(Dold) For each n, we have

$$
\sum_{k \mid n} \mu(k) L\left(f^{n / k}\right)=0 \quad \bmod n
$$

where μ is the Möbius function.
The above equations are called the Dold congruences

Theorem

(Dold) For each n, we have

$$
\sum_{k \mid n} \mu(k) L\left(f^{n / k}\right)=0 \quad \bmod n
$$

where μ is the Möbius function.
The above equations are called the Dold congruences, and they are also satisfied by the sequence of indices.

Theorem

(Dold) For each n, we have

$$
\sum_{k \mid n} \mu(k) L\left(f^{n / k}\right)=0 \quad \bmod n
$$

where μ is the Möbius function.
The above equations are called the Dold congruences, and they are also satisfied by the sequence of indices.

In fact, Dold proved a converse:
Theorem
(Dold) Let $\left(i_{n}\right)$ be a sequence which satisfies the Dold congruences. Then there is a selfmap of an ENR such that $\left(i_{n}\right)$ is the sequence of fixed point indices.

Theorem

(Dold) For each n, we have

$$
\sum_{k \mid n} \mu(k) L\left(f^{n / k}\right)=0 \quad \bmod n
$$

where μ is the Möbius function.
The above equations are called the Dold congruences, and they are also satisfied by the sequence of indices.

In fact, Dold proved a converse:
Theorem
(Dold) Let $\left(i_{n}\right)$ be a sequence which satisfies the Dold congruences. Then there is a selfmap of an ENR such that $\left(i_{n}\right)$ is the sequence of fixed point indices.

Lots more work on this followed.

By the way, the asymptotic behavior of the sequences of Lefschetz and Nielsen numbers are also studied.

By the way, the asymptotic behavior of the sequences of Lefschetz and Nielsen numbers are also studied.

We can use the sequences to define zeta functions

By the way, the asymptotic behavior of the sequences of Lefschetz and Nielsen numbers are also studied.

We can use the sequences to define zeta functions (Dugardein's talk)

By the way, the asymptotic behavior of the sequences of Lefschetz and Nielsen numbers are also studied.

We can use the sequences to define zeta functions (Dugardein's talk)

Jiang also defines the asymptotic Nielsen number $N^{\infty}(f)$, the exponential growth rate of the sequence of Nielsen numbers.

By the way, the asymptotic behavior of the sequences of Lefschetz and Nielsen numbers are also studied.

We can use the sequences to define zeta functions (Dugardein's talk)

Jiang also defines the asymptotic Nielsen number $N^{\infty}(f)$, the exponential growth rate of the sequence of Nielsen numbers.

Jiang showed $\log N^{\infty}(f)$ is a lower bound for the topological entropy of f.

Summary:

Summary: The behavior of the sequences $\left(L\left(f^{n}\right)\right),\left(N\left(f^{n}\right)\right),\left(\operatorname{ind}\left(f^{n}, x\right)\right)$ is complicated and interesting.

Summary: The behavior of the sequences $\left(L\left(f^{n}\right)\right),\left(N\left(f^{n}\right)\right),\left(\operatorname{ind}\left(f^{n}, x\right)\right)$ is complicated and interesting.

We'll focus mainly on getting information about specific iterations.

Summary: The behavior of the sequences $\left(L\left(f^{n}\right)\right),\left(N\left(f^{n}\right)\right),\left(\operatorname{ind}\left(f^{n}, x\right)\right)$ is complicated and interesting.

We'll focus mainly on getting information about specific iterations. Not the whole sequences.

This theory is not 85 years old-

This theory is not 85 years old- the basics are by Jiang, in his 1983 book.

This theory is not 85 years old- the basics are by Jiang, in his 1983 book.

Jiang's work was based on unpublished papers by Halpern from the 1970s.

This theory is not 85 years old- the basics are by Jiang, in his 1983 book.

Jiang's work was based on unpublished papers by Halpern from the 1970s.

There are two basic invariants, which J\&M call the Nielsen-Jiang periodic numbers:

This theory is not 85 years old- the basics are by Jiang, in his 1983 book.

Jiang's work was based on unpublished papers by Halpern from the 1970s.

There are two basic invariants, which J\&M call the Nielsen-Jiang periodic numbers:

- $N P_{n}(f)$ counts the number of periodic points with minimal period n.

This theory is not 85 years old- the basics are by Jiang, in his 1983 book.

Jiang's work was based on unpublished papers by Halpern from the 1970s.

There are two basic invariants, which J\&M call the Nielsen-Jiang periodic numbers:

- $N P_{n}(f)$ counts the number of periodic points with minimal period n.
- $N \Phi_{n}(f)$ counts the number of all periodic points with period n.

We'll discuss the definitions of $N P_{n}(f)$ and $N \Phi_{n}(f)$, along with some basic properties and relations between them.

We'll discuss the definitions of $N P_{n}(f)$ and $N \Phi_{n}(f)$, along with some basic properties and relations between them.

For example, for any map we have:
$\#\{$ points with period $n\}=\sum_{k \mid n} \#\{$ points with minimal period $k\}$

We'll discuss the definitions of $N P_{n}(f)$ and $N \Phi_{n}(f)$, along with some basic properties and relations between them.

For example, for any map we have:
$\#\{$ points with period $n\}=\sum_{k \mid n} \#\{$ points with minimal period $k\}$
So we could hope that

$$
N \Phi_{n}(f) \stackrel{?}{=} \sum_{k \mid n} N P_{n}(f)
$$

We'll discuss the definitions of $N P_{n}(f)$ and $N \Phi_{n}(f)$, along with some basic properties and relations between them.

For example, for any map we have:
$\#\{$ points with period $n\}=\sum_{k \mid n} \#\{$ points with minimal period $k\}$
So we could hope that

$$
N \Phi_{n}(f) \stackrel{?}{=} \sum_{k \mid n} N P_{n}(f)
$$

This is true for nice spaces, but not always.

The definitions for $N P_{n}$ and $N \Phi_{n}$ are a bit subtle.

The definitions for $N P_{n}$ and $N \Phi_{n}$ are a bit subtle.

As usual we'll use the Reidemeister classes and the fixed point index

The definitions for $N P_{n}$ and $N \Phi_{n}$ are a bit subtle.

As usual we'll use the Reidemeister classes and the fixed point index, but what about minimality of periods?

The definitions for $N P_{n}$ and $N \Phi_{n}$ are a bit subtle.

As usual we'll use the Reidemeister classes and the fixed point index, but what about minimality of periods?

It turns out this can be approached algebraically using the Reidemeister classes.

For any map there is an inclusion $\operatorname{Fix}\left(f^{k}\right) \subset \operatorname{Fix}\left(f^{n}\right)$ when k divides n.

For any map there is an inclusion $\operatorname{Fix}\left(f^{k}\right) \subset \operatorname{Fix}\left(f^{n}\right)$ when k divides n.

We want something like this for Reidemeister classes.

For any map there is an inclusion $\operatorname{Fix}\left(f^{k}\right) \subset \operatorname{Fix}\left(f^{n}\right)$ when k divides n.

We want something like this for Reidemeister classes.

If $x \in \operatorname{Fix}\left(f^{k}\right)$ has Reidemeister class $\alpha \in \mathcal{R}\left(f^{k}\right)$, what is the Reidemeister class of x when we view $x \in \operatorname{Fix}\left(f^{n}\right)$?

For any map there is an inclusion $\operatorname{Fix}\left(f^{k}\right) \subset \operatorname{Fix}\left(f^{n}\right)$ when k divides n.

We want something like this for Reidemeister classes.

If $x \in \operatorname{Fix}\left(f^{k}\right)$ has Reidemeister class $\alpha \in \mathcal{R}\left(f^{k}\right)$, what is the Reidemeister class of x when we view $x \in \operatorname{Fix}\left(f^{n}\right)$?

It can't be "the same", since $\mathcal{R}\left(f^{k}\right)$ and $\mathcal{R}\left(f^{n}\right)$ are different groups.

For any map there is an inclusion $\operatorname{Fix}\left(f^{k}\right) \subset \operatorname{Fix}\left(f^{n}\right)$ when k divides n.

We want something like this for Reidemeister classes.

If $x \in \operatorname{Fix}\left(f^{k}\right)$ has Reidemeister class $\alpha \in \mathcal{R}\left(f^{k}\right)$, what is the Reidemeister class of x when we view $x \in \operatorname{Fix}\left(f^{n}\right)$?

It can't be "the same", since $\mathcal{R}\left(f^{k}\right)$ and $\mathcal{R}\left(f^{n}\right)$ are different groups.

For example on the circle, if f is degree d, then $\mathcal{R}\left(f^{k}\right)=\mathbb{Z}_{\left|1-d^{k}\right|}$ and $\mathcal{R}\left(f^{n}\right)=\mathbb{Z}_{\left|1-d^{n}\right|}$.

For any map there is an inclusion $\operatorname{Fix}\left(f^{k}\right) \subset \operatorname{Fix}\left(f^{n}\right)$ when k divides n.

We want something like this for Reidemeister classes.

If $x \in \operatorname{Fix}\left(f^{k}\right)$ has Reidemeister class $\alpha \in \mathcal{R}\left(f^{k}\right)$, what is the Reidemeister class of x when we view $x \in \operatorname{Fix}\left(f^{n}\right)$?

It can't be "the same", since $\mathcal{R}\left(f^{k}\right)$ and $\mathcal{R}\left(f^{n}\right)$ are different groups.

For example on the circle, if f is degree d, then $\mathcal{R}\left(f^{k}\right)=\mathbb{Z}_{\left|1-d^{k}\right|}$ and $\mathcal{R}\left(f^{n}\right)=\mathbb{Z}_{\left|1-d^{n}\right|}$.

So what we need is a map $\mathcal{R}\left(f^{k}\right) \rightarrow \mathcal{R}\left(f^{n}\right)$ which respects the periods correctly.

Here is the map $\iota_{k, n}: \mathcal{R}\left(f^{k}\right) \rightarrow \mathcal{R}\left(f^{n}\right)$, called the boost from level k to level n.

Here is the map $\iota_{k, n}: \mathcal{R}\left(f^{k}\right) \rightarrow \mathcal{R}\left(f^{n}\right)$, called the boost from level k to level n.

For $\alpha \in \pi_{1}$ define:

$$
\iota_{k, n}\left([\alpha]^{k}\right)=\left[\alpha f_{\#}^{k}(\alpha) f_{\#}^{2 k}(\alpha) \ldots f_{\#}^{n-k}(\alpha)\right]^{n} .
$$

Here is the map $\iota_{k, n}: \mathcal{R}\left(f^{k}\right) \rightarrow \mathcal{R}\left(f^{n}\right)$, called the boost from level k to level n.

For $\alpha \in \pi_{1}$ define:

$$
\iota_{k, n}\left([\alpha]^{k}\right)=\left[\alpha f_{\#}^{k}(\alpha) f_{\#}^{2 k}(\alpha) \ldots f_{\#}^{n-k}(\alpha)\right]^{n} .
$$

The superscript in $[\alpha]^{k}$ just reminds us that this is the Reidemeister class of α in $\mathcal{R}\left(f^{k}\right)$.

The boost $\iota_{k, n}$ respects periods of points:

The boost $\iota_{k, n}$ respects periods of points:

If $x \in \operatorname{Fix}\left(f^{k}\right)$ has Reidemeister class $[\alpha]^{k} \in \mathcal{R}\left(f^{k}\right)$, then $x \in \operatorname{Fix}\left(f^{n}\right)$ has Reidemeister class $\iota_{k, n}\left([\alpha]^{k}\right) \in \mathcal{R}\left(f^{n}\right)$.

The boost $\iota_{k, n}$ respects periods of points:

If $x \in \operatorname{Fix}\left(f^{k}\right)$ has Reidemeister class $[\alpha]^{k} \in \mathcal{R}\left(f^{k}\right)$, then $x \in \operatorname{Fix}\left(f^{n}\right)$ has Reidemeister class $\iota_{k, n}\left([\alpha]^{k}\right) \in \mathcal{R}\left(f^{n}\right)$.

The boost also composes nicely.

The boost $\iota_{k, n}$ respects periods of points:

If $x \in \operatorname{Fix}\left(f^{k}\right)$ has Reidemeister class $[\alpha]^{k} \in \mathcal{R}\left(f^{k}\right)$, then $x \in \operatorname{Fix}\left(f^{n}\right)$ has Reidemeister class $\iota_{k, n}\left([\alpha]^{k}\right) \in \mathcal{R}\left(f^{n}\right)$.

The boost also composes nicely.

When $m|k| n$, we have

$$
\iota_{m, n}=\iota_{k, n} \circ \iota_{m, k}
$$

When $[\alpha]^{n}$ is in the image of some $\iota_{k, n}$ for $k \mid n$, we say that $[\alpha]^{n}$ is reducible.

When $[\alpha]^{n}$ is in the image of some $\iota_{k, n}$ for $k \mid n$, we say that $[\alpha]^{n}$ is reducible. Otherwise it's irreducible.

When $[\alpha]^{n}$ is in the image of some $\iota_{k, n}$ for $k \mid n$, we say that $[\alpha]^{n}$ is reducible. Otherwise it's irreducible.

This is the algebraic version of some point having nonminimal period.

When $[\alpha]^{n}$ is in the image of some $\iota_{k, n}$ for $k \mid n$, we say that $[\alpha]^{n}$ is reducible. Otherwise it's irreducible.

This is the algebraic version of some point having nonminimal period.

If we want a Nielsen number for minimal periods, it might be good to define $N P_{n}(f)$ as
\# of essential irreducible classes of $\mathcal{R}\left(f^{n}\right)$

When $[\alpha]^{n}$ is in the image of some $\iota_{k, n}$ for $k \mid n$, we say that $[\alpha]^{n}$ is reducible. Otherwise it's irreducible.

This is the algebraic version of some point having nonminimal period.

If we want a Nielsen number for minimal periods, it might be good to define $N P_{n}(f)$ as
\# of essential irreducible classes of $\mathcal{R}\left(f^{n}\right)$
This is not quite good enough.

The periodic points live in orbits:

$$
x \in \operatorname{Fix}\left(f^{n}\right) \text { has }\left\{x, f(x), \ldots, f^{n-1}(x)\right\}
$$

The periodic points live in orbits:

$$
x \in \operatorname{Fix}\left(f^{n}\right) \text { has }\left\{x, f(x), \ldots, f^{n-1}(x)\right\}
$$

When x has minimal period n, the points of the orbit are all distinct

The periodic points live in orbits:

$$
x \in \operatorname{Fix}\left(f^{n}\right) \text { has }\left\{x, f(x), \ldots, f^{n-1}(x)\right\}
$$

When x has minimal period n, the points of the orbit are all distinct, and they all have minimal period n.

The periodic points live in orbits:

$$
x \in \operatorname{Fix}\left(f^{n}\right) \text { has }\left\{x, f(x), \ldots, f^{n-1}(x)\right\}
$$

When x has minimal period n, the points of the orbit are all distinct, and they all have minimal period n.

It turns out there are times when $x \in \operatorname{Fix}\left(f^{n}\right)$ has the same Reidemeister class as $f(x) \in \operatorname{Fix}\left(f^{n}\right)$.

The periodic points live in orbits:

$$
x \in \operatorname{Fix}\left(f^{n}\right) \text { has }\left\{x, f(x), \ldots, f^{n-1}(x)\right\}
$$

When x has minimal period n, the points of the orbit are all distinct, and they all have minimal period n.

It turns out there are times when $x \in \operatorname{Fix}\left(f^{n}\right)$ has the same Reidemeister class as $f(x) \in \operatorname{Fix}\left(f^{n}\right)$.

Actually it's possible that every point in the orbit of x has the same Reidemeister class as x.

$$
x \in \operatorname{Fix}\left(f^{n}\right) \text { has }\left\{x, f(x), \ldots, f^{n-1}(x)\right\}
$$

Possible to have n distinct periodic points with minimal period n, but only one Reidemeister class containing them all.

$$
x \in \operatorname{Fix}\left(f^{n}\right) \text { has }\left\{x, f(x), \ldots, f^{n-1}(x)\right\}
$$

Possible to have n distinct periodic points with minimal period n, but only one Reidemeister class containing them all.

In that case, $\mathcal{R}\left(f^{n}\right)$ has only 1 essential irreducible class

$$
x \in \operatorname{Fix}\left(f^{n}\right) \text { has }\left\{x, f(x), \ldots, f^{n-1}(x)\right\} .
$$

Possible to have n distinct periodic points with minimal period n, but only one Reidemeister class containing them all.

In that case, $\mathcal{R}\left(f^{n}\right)$ has only 1 essential irreducible class, but n different points with minimal period n.

$$
x \in \operatorname{Fix}\left(f^{n}\right) \text { has }\left\{x, f(x), \ldots, f^{n-1}(x)\right\} .
$$

Possible to have n distinct periodic points with minimal period n, but only one Reidemeister class containing them all.

In that case, $\mathcal{R}\left(f^{n}\right)$ has only 1 essential irreducible class, but n different points with minimal period n.

So the number of essential irreducible classes is not a lower bound for the number of points with minimal period n.

$$
x \in \operatorname{Fix}\left(f^{n}\right) \text { has }\left\{x, f(x), \ldots, f^{n-1}(x)\right\} .
$$

Possible to have n distinct periodic points with minimal period n, but only one Reidemeister class containing them all.

In that case, $\mathcal{R}\left(f^{n}\right)$ has only 1 essential irreducible class, but n different points with minimal period n.

So the number of essential irreducible classes is not a lower bound for the number of points with minimal period n.

We need to be careful about the orbits.

Luckily, we can approach the orbits algebraically too.

Luckily, we can approach the orbits algebraically too.

For a class $[\alpha]^{n} \in \mathcal{R}\left(f^{n}\right)$, the Reidemeister orbit of α is:

$$
\left\{[\alpha]^{n},\left[f_{\#}(\alpha)\right]^{n}, \ldots,\left[f_{\#}^{n-1}(\alpha)\right]^{n}\right\}
$$

Luckily, we can approach the orbits algebraically too.

For a class $[\alpha]^{n} \in \mathcal{R}\left(f^{n}\right)$, the Reidemeister orbit of α is:

$$
\left\{[\alpha]^{n},\left[f_{\#}(\alpha)\right]^{n}, \ldots,\left[f_{\#}^{n-1}(\alpha)\right]^{n}\right\}
$$

An orbit is reducible if it contains a reducible class, and essential if it contains an essential class.

The invariant we're looking for is:

$$
N P_{n}(f)=\left(\# \text { essential irreducible orbits in } \mathcal{R}\left(f^{n}\right)\right) \cdot n
$$

The invariant we're looking for is:

$$
N P_{n}(f)=\left(\# \text { essential irreducible orbits in } \mathcal{R}\left(f^{n}\right)\right) \cdot n
$$

Times n because each orbit indicates n points of minimal period n.

The invariant we're looking for is:

$$
N P_{n}(f)=\left(\# \text { essential irreducible orbits in } \mathcal{R}\left(f^{n}\right)\right) \cdot n
$$

Times n because each orbit indicates n points of minimal period n.

Once you show all of this is well-defined, it's not hard to show:

$$
N P_{n}(f) \leq \min \left\{\# P_{n}(g) \mid g \simeq f\right\}
$$

where P_{n} is the set of periodic points with minimal period n.

Let's do an example on a circle.

Let's do an example on a circle.

On circles (and tori), things are well behaved:

- When f is degree $d \neq 1$, we have $\mathcal{R}\left(f^{n}\right)=\mathbb{Z}_{\left|1-d^{n}\right|}$ and all classes are essential.

Let's do an example on a circle.

On circles (and tori), things are well behaved:

- When f is degree $d \neq 1$, we have $\mathcal{R}\left(f^{n}\right)=\mathbb{Z}_{\left|1-d^{n}\right|}$ and all classes are essential.
- All Reidemeister orbits at level n have n distinct classes.

Let's do an example on a circle.

On circles (and tori), things are well behaved:

- When f is degree $d \neq 1$, we have $\mathcal{R}\left(f^{n}\right)=\mathbb{Z}_{\left|1-d^{n}\right|}$ and all classes are essential.
- All Reidemeister orbits at level n have n distinct classes.

$$
\begin{aligned}
N P_{n}(f) & =\left(\# \text { essential irreducible orbits in } \mathcal{R}\left(f^{n}\right)\right) \cdot n \\
& =\# \text { of essential irreducible classes of } \mathcal{R}\left(f^{n}\right)
\end{aligned}
$$

Let $f: S^{1} \rightarrow S^{1}$ be degree 4 .

Let $f: S^{1} \rightarrow S^{1}$ be degree 4 .

For $N P_{1}(f)$:

Let $f: S^{1} \rightarrow S^{1}$ be degree 4 .

For $N P_{1}(f)$: All classes at level 1 are irreducible, so
$N P_{1}(f)=\#$ of essential irreducible classes of $\mathcal{R}\left(f^{1}\right)$

Let $f: S^{1} \rightarrow S^{1}$ be degree 4 .

For $N P_{1}(f)$: All classes at level 1 are irreducible, so

$$
\begin{aligned}
N P_{1}(f) & =\# \text { of essential irreducible classes of } \mathcal{R}\left(f^{1}\right) \\
& =\# \text { of essential classes of } \mathcal{R}(f)
\end{aligned}
$$

Let $f: S^{1} \rightarrow S^{1}$ be degree 4 .

For $N P_{1}(f)$: All classes at level 1 are irreducible, so

$$
\begin{aligned}
N P_{1}(f) & =\# \text { of essential irreducible classes of } \mathcal{R}\left(f^{1}\right) \\
& =\# \text { of essential classes of } \mathcal{R}(f)=N(f)
\end{aligned}
$$

Let $f: S^{1} \rightarrow S^{1}$ be degree 4 .

For $N P_{1}(f)$: All classes at level 1 are irreducible, so

$$
\begin{aligned}
N P_{1}(f) & =\# \text { of essential irreducible classes of } \mathcal{R}\left(f^{1}\right) \\
& =\# \text { of essential classes of } \mathcal{R}(f)=N(f)=|1-4|=3
\end{aligned}
$$

For $N P_{2}$, we have $\mathcal{R}\left(f^{2}\right)=\mathbb{Z}_{\left|1-4^{2}\right|}=\mathbb{Z}_{15}$.

For $N P_{2}$, we have $\mathcal{R}\left(f^{2}\right)=\mathbb{Z}_{\left|1-4^{2}\right|}=\mathbb{Z}_{15}$.

All are essential, which are reducible?

For $N P_{2}$, we have $\mathcal{R}\left(f^{2}\right)=\mathbb{Z}_{\left|1-4^{2}\right|}=\mathbb{Z}_{15}$.

All are essential, which are reducible? What's the image of $\iota_{1,2}$?

For $N P_{2}$, we have $\mathcal{R}\left(f^{2}\right)=\mathbb{Z}_{\left|1-4^{2}\right|}=\mathbb{Z}_{15}$.

All are essential, which are reducible? What's the image of $\iota_{1,2}$?

$$
\iota_{1,2}\left([\alpha]^{1}\right)=[\alpha]^{2}+[f(\alpha)]^{2}=[\alpha]+4[\alpha]=5[\alpha] .
$$

For $N P_{2}$, we have $\mathcal{R}\left(f^{2}\right)=\mathbb{Z}_{\left|1-4^{2}\right|}=\mathbb{Z}_{15}$.

All are essential, which are reducible? What's the image of $\iota_{1,2}$?

$$
\iota_{1,2}\left([\alpha]^{1}\right)=[\alpha]^{2}+[f(\alpha)]^{2}=[\alpha]+4[\alpha]=5[\alpha] .
$$

So $\iota_{1,2}: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{15}$ is multiplication by 5 .

For $N P_{2}$, we have $\mathcal{R}\left(f^{2}\right)=\mathbb{Z}_{\left|1-4^{2}\right|}=\mathbb{Z}_{15}$.

All are essential, which are reducible? What's the image of $\iota_{1,2}$?

$$
\iota_{1,2}\left([\alpha]^{1}\right)=[\alpha]^{2}+[f(\alpha)]^{2}=[\alpha]+4[\alpha]=5[\alpha] .
$$

So $\iota_{1,2}: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{15}$ is multiplication by 5 .

So in $\mathbb{Z}_{15},\{0,5,10\}$ are reducible, the other 12 are irreducible.

For $N P_{2}$, we have $\mathcal{R}\left(f^{2}\right)=\mathbb{Z}_{\left|1-4^{2}\right|}=\mathbb{Z}_{15}$.

All are essential, which are reducible? What's the image of $\iota_{1,2}$?

$$
\iota_{1,2}\left([\alpha]^{1}\right)=[\alpha]^{2}+[f(\alpha)]^{2}=[\alpha]+4[\alpha]=5[\alpha] .
$$

So $\iota_{1,2}: \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{15}$ is multiplication by 5 .

So in $\mathbb{Z}_{15},\{0,5,10\}$ are reducible, the other 12 are irreducible.

So $N P_{2}(f)=12$.

$N P_{3}$ is similar.

$N P_{3}$ is similar. $\mathcal{R}\left(f^{3}\right)=\mathbb{Z}_{\left|1-4^{3}\right|}=\mathbb{Z}_{63}$.
$N P_{3}$ is similar. $\mathcal{R}\left(f^{3}\right)=\mathbb{Z}_{\left|1-4^{3}\right|}=\mathbb{Z}_{63}$.

$$
\iota_{1,3}=1+4+4^{2}=21
$$

$N P_{3}$ is similar. $\mathcal{R}\left(f^{3}\right)=\mathbb{Z}_{\left|1-4^{3}\right|}=\mathbb{Z}_{63}$.

$$
\iota_{1,3}=1+4+4^{2}=21
$$

There is no $\iota_{2,3}$.
$N P_{3}$ is similar. $\mathcal{R}\left(f^{3}\right)=\mathbb{Z}_{\left|1-4^{3}\right|}=\mathbb{Z}_{63}$.

$$
\iota_{1,3}=1+4+4^{2}=21
$$

There is no $\iota_{2,3}$.

So in \mathbb{Z}_{63} the multiples of 21 are reducible.
$N P_{3}$ is similar. $\mathcal{R}\left(f^{3}\right)=\mathbb{Z}_{\left|1-4^{3}\right|}=\mathbb{Z}_{63}$.

$$
\iota_{1,3}=1+4+4^{2}=21
$$

There is no $\iota_{2,3}$.

So in \mathbb{Z}_{63} the multiples of 21 are reducible.

So we have 3 reducible classes, so $N P_{3}(f)=63-3=60$.
$N P_{4}$ is a bit more interesting since we have 2 nontrivial boosts.
$N P_{4}$ is a bit more interesting since we have 2 nontrivial boosts.

We have

$$
\iota_{1,4}=1+4+4^{2}+4^{3}=85
$$

$N P_{4}$ is a bit more interesting since we have 2 nontrivial boosts.

We have

$$
\begin{aligned}
& \iota_{1,4}=1+4+4^{2}+4^{3}=85 \\
& \iota_{2,4}=1+4^{2}=17
\end{aligned}
$$

So in $\mathcal{R}\left(f^{4}\right)=\mathbb{Z}_{\left|1-4^{4}\right|}=\mathbb{Z}_{255}$, multiples of 85 and multiples of 17 are reducible.
$N P_{4}$ is a bit more interesting since we have 2 nontrivial boosts.

We have

$$
\begin{aligned}
& \iota_{1,4}=1+4+4^{2}+4^{3}=85 \\
& \iota_{2,4}=1+4^{2}=17
\end{aligned}
$$

So in $\mathcal{R}\left(f^{4}\right)=\mathbb{Z}_{\left|1-4^{4}\right|}=\mathbb{Z}_{255}$, multiples of 85 and multiples of 17 are reducible.

But $85=5 \cdot 17$, so really it's just the multiples of 17
$N P_{4}$ is a bit more interesting since we have 2 nontrivial boosts.

We have

$$
\begin{aligned}
& \iota_{1,4}=1+4+4^{2}+4^{3}=85 \\
& \iota_{2,4}=1+4^{2}=17
\end{aligned}
$$

So in $\mathcal{R}\left(f^{4}\right)=\mathbb{Z}_{\left|1-4^{4}\right|}=\mathbb{Z}_{255}$, multiples of 85 and multiples of 17 are reducible.

But $85=5 \cdot 17$, so really it's just the multiples of 17 and $255=15 \cdot 17$, so we have 15 reducible classes.
$N P_{4}$ is a bit more interesting since we have 2 nontrivial boosts.

We have

$$
\begin{aligned}
& \iota_{1,4}=1+4+4^{2}+4^{3}=85 \\
& \iota_{2,4}=1+4^{2}=17
\end{aligned}
$$

So in $\mathcal{R}\left(f^{4}\right)=\mathbb{Z}_{\left|1-4^{4}\right|}=\mathbb{Z}_{255}$, multiples of 85 and multiples of 17 are reducible.

But $85=5 \cdot 17$, so really it's just the multiples of 17 and $255=15 \cdot 17$, so we have 15 reducible classes.

So $N P_{4}(f)=255-15=240$.

This type of computation can be done pretty easily for tori

This type of computation can be done pretty easily for tori, extended to nilmanifolds and some solvmanifolds by Heath \& Keppelmann, late 1990s.

This type of computation can be done pretty easily for tori, extended to nilmanifolds and some solvmanifolds by Heath \& Keppelmann, late 1990s.

It turns out all these spaces have some very nice properties which make these computations possible.

This type of computation can be done pretty easily for tori, extended to nilmanifolds and some solvmanifolds by Heath \& Keppelmann, late 1990s.

It turns out all these spaces have some very nice properties which make these computations possible.

We've repeatedly used the fact that the Reidemeister orbits at level n contain n distinct classes.

This type of computation can be done pretty easily for tori, extended to nilmanifolds and some solvmanifolds by Heath \& Keppelmann, late 1990s.

It turns out all these spaces have some very nice properties which make these computations possible.

We've repeatedly used the fact that the Reidemeister orbits at level n contain n distinct classes.

It's also true for tori that $\iota_{k, n}$ is injective (when $L\left(f^{n}\right) \neq 0$).

This type of computation can be done pretty easily for tori, extended to nilmanifolds and some solvmanifolds by Heath \& Keppelmann, late 1990s.

It turns out all these spaces have some very nice properties which make these computations possible.

We've repeatedly used the fact that the Reidemeister orbits at level n contain n distinct classes.

It's also true for tori that $\iota_{k, n}$ is injective (when $L\left(f^{n}\right) \neq 0$). Then we often don't need to compute the map $\iota_{k, n}$ exactly.

What about $N \Phi_{n}(f)$?

What about $N \Phi_{n}(f)$?

This is meant to be a lower bound for

$$
\min \left\{\# \operatorname{Fix}\left(g^{n}\right) \mid g \simeq f\right\}
$$

What about $N \Phi_{n}(f)$?

This is meant to be a lower bound for

$$
\min \left\{\# \operatorname{Fix}\left(g^{n}\right) \mid g \simeq f\right\}
$$

$N\left(f^{n}\right)$ is inadequate for this.

What about $N \Phi_{n}(f)$?

This is meant to be a lower bound for

$$
\min \left\{\# \operatorname{Fix}\left(g^{n}\right) \mid g \simeq f\right\}
$$

$N\left(f^{n}\right)$ is inadequate for this.

Our earlier example: complex conjugate on S^{1}.
f^{2} is the degree 1 map on S^{1}, so $N\left(f^{2}\right)=|1-1|=0$.
f^{2} is the degree 1 map on S^{1}, so $N\left(f^{2}\right)=|1-1|=0$.

But $N(f)=2$ so all maps homotopic to f have at least 2 fixed points
f^{2} is the degree 1 map on S^{1}, so $N\left(f^{2}\right)=|1-1|=0$.

But $N(f)=2$ so all maps homotopic to f have at least 2 fixed points, and thus at least 2 periodic points of period 2 .
f^{2} is the degree 1 map on S^{1}, so $N\left(f^{2}\right)=|1-1|=0$.

But $N(f)=2$ so all maps homotopic to f have at least 2 fixed points, and thus at least 2 periodic points of period 2.

So $N\left(f^{2}\right)=0$ even though all maps homotopic to f have at least 2 periodic points of period 2 .
f^{2} is the degree 1 map on S^{1}, so $N\left(f^{2}\right)=|1-1|=0$.

But $N(f)=2$ so all maps homotopic to f have at least 2 fixed points, and thus at least 2 periodic points of period 2.

So $N\left(f^{2}\right)=0$ even though all maps homotopic to f have at least 2 periodic points of period 2 .

The issue here is that the 2 points of period 2 are an inessential class in $\mathcal{R}\left(f^{2}\right)$, but they are preceded by an essential class in $\mathcal{R}(f)$.
f^{2} is the degree 1 map on S^{1}, so $N\left(f^{2}\right)=|1-1|=0$.

But $N(f)=2$ so all maps homotopic to f have at least 2 fixed points, and thus at least 2 periodic points of period 2.

So $N\left(f^{2}\right)=0$ even though all maps homotopic to f have at least 2 periodic points of period 2 .

The issue here is that the 2 points of period 2 are an inessential class in $\mathcal{R}\left(f^{2}\right)$, but they are preceded by an essential class in $\mathcal{R}(f)$.

So really we need to count those as being essential.

For a definition of $N \Phi_{n}(f)$:

For a definition of $N \Phi_{n}(f)$:

Given a Reidemeister orbit at level n, we need to consider all possible reductions to see if it is preceded by an essential orbit at a lower level.

For a definition of $N \Phi_{n}(f)$:

Given a Reidemeister orbit at level n, we need to consider all possible reductions to see if it is preceded by an essential orbit at a lower level.

Each such preceding essential orbit contributes to $N \Phi_{n}(f)$.

For a definition of $N \Phi_{n}(f)$:

Given a Reidemeister orbit at level n, we need to consider all possible reductions to see if it is preceded by an essential orbit at a lower level.

Each such preceding essential orbit contributes to $N \Phi_{n}(f)$.

Specifically, a preceding essential orbit at level k should increase $N \Phi_{n}(f)$ by k.

We'll need to look at the entire union

$$
\bigcup_{k \mid n} \mathcal{O} \mathcal{R}\left(f^{k}\right)
$$

We'll need to look at the entire union

$$
\bigcup_{k \mid n} \mathcal{O R}\left(f^{k}\right)
$$

A set of orbits \mathcal{G} is called a preceding [n-]system when every essential orbit of the union reduces to something in \mathcal{G}.

We'll need to look at the entire union

$$
\bigcup_{k \mid n} \mathcal{O} \mathcal{R}\left(f^{k}\right)
$$

A set of orbits \mathcal{G} is called a preceding [n-]system when every essential orbit of the union reduces to something in \mathcal{G}.

Every orbit has a depth: the lowest level to which it reduces.

We'll need to look at the entire union

$$
\bigcup_{k \mid n} \mathcal{O} \mathcal{R}\left(f^{k}\right)
$$

A set of orbits \mathcal{G} is called a preceding [n-]system when every essential orbit of the union reduces to something in \mathcal{G}.

Every orbit has a depth: the lowest level to which it reduces.
\mathcal{G} is a minimal preceding system if its depth sum is minimal.

Then $N \Phi_{n}(f)$ is defined as:

$$
N \Phi_{n}(f)=\sum_{O \in \mathcal{G}} d(O)
$$

where d is the depth and \mathcal{G} is any minimal preceding n-system.

Then $N \Phi_{n}(f)$ is defined as:

$$
N \Phi_{n}(f)=\sum_{O \in \mathcal{G}} d(O)
$$

where d is the depth and \mathcal{G} is any minimal preceding n-system.

So any preceding orbit at level k contributes k to the sum, which is what we wanted.

Then $N \Phi_{n}(f)$ is defined as:

$$
N \Phi_{n}(f)=\sum_{O \in \mathcal{G}} d(O)
$$

where d is the depth and \mathcal{G} is any minimal preceding n-system.

So any preceding orbit at level k contributes k to the sum, which is what we wanted.

Pretty complicated!

If you're lucky, you'll be able to compute $N \Phi_{n}(f)$ by other means.

If you're lucky, you'll be able to compute $N \Phi_{n}(f)$ by other means.

For example,

$$
N \Phi_{n}(f) \stackrel{?}{=} \sum_{k \mid n} N P_{k}(f)
$$

If you're lucky, you'll be able to compute $N \Phi_{n}(f)$ by other means.

For example,

$$
N \Phi_{n}(f) \stackrel{?}{=} \sum_{k \mid n} N P_{k}(f)
$$

Let's talk about this.

If you're lucky, you'll be able to compute $N \Phi_{n}(f)$ by other means.

For example,

$$
N \Phi_{n}(f) \stackrel{?}{=} \sum_{k \mid n} N P_{k}(f)
$$

Let's talk about this.

We want to relate a preceding n-system to the total number of all essential irreducible orbits.

Any preceding n-system automatically contains every essential irreducible orbit.

Any preceding n-system automatically contains every essential irreducible orbit.

An essential irreducible orbit at level k has depth k since it's irreducible.

Any preceding n-system automatically contains every essential irreducible orbit.

An essential irreducible orbit at level k has depth k since it's irreducible. So:
$N \Phi_{n}(f) \geq \sum_{k \mid n}\left(\#\right.$ essential irreducible orbits in $\left.\mathcal{R}\left(f^{k}\right)\right) \cdot k$

Any preceding n-system automatically contains every essential irreducible orbit.

An essential irreducible orbit at level k has depth k since it's irreducible. So:

$$
N \Phi_{n}(f) \geq \sum_{k \mid n}\left(\# \text { essential irreducible orbits in } \mathcal{R}\left(f^{k}\right)\right) \cdot k
$$

So

$$
N \Phi_{n}(f) \geq \sum_{k \mid n} N P_{k}(f)
$$

Any preceding n-system automatically contains every essential irreducible orbit.

An essential irreducible orbit at level k has depth k since it's irreducible. So:

$$
N \Phi_{n}(f) \geq \sum_{k \mid n}\left(\# \text { essential irreducible orbits in } \mathcal{R}\left(f^{k}\right)\right) \cdot k
$$

So

$$
N \Phi_{n}(f) \geq \sum_{k \mid n} N P_{k}(f)
$$

So half of our equality is always true.

Any preceding n-system automatically contains every essential irreducible orbit.

An essential irreducible orbit at level k has depth k since it's irreducible. So:

$$
N \Phi_{n}(f) \geq \sum_{k \mid n}\left(\# \text { essential irreducible orbits in } \mathcal{R}\left(f^{k}\right)\right) \cdot k
$$

So

$$
N \Phi_{n}(f) \geq \sum_{k \mid n} N P_{k}(f)
$$

So half of our equality is always true. The other direction is not always true.

Consider the antipodal map on S^{2}.

Consider the antipodal map on S^{2}.

$\mathcal{R}\left(f^{k}\right)=1$ for every k, since π_{1} is trivial.

Consider the antipodal map on S^{2}.

$\mathcal{R}\left(f^{k}\right)=1$ for every k, since π_{1} is trivial.

So all classes at all levels reduce to level 1 .

Consider the antipodal map on S^{2}.

$\mathcal{R}\left(f^{k}\right)=1$ for every k, since π_{1} is trivial.

So all classes at all levels reduce to level 1 .

But the level 1 class is inessential because f is fixed point free.

All classes reduce except the bottom inessential one.

All classes reduce except the bottom inessential one. (The even level classes are essential)

All classes reduce except the bottom inessential one. (The even level classes are essential)

So there is never any essential irreducible class, so $N P_{n}(f)=0$ for all k.

All classes reduce except the bottom inessential one. (The even level classes are essential)

So there is never any essential irreducible class, so $N P_{n}(f)=0$ for all k.

But f^{2} is the identity, so $N\left(f^{2}\right)=1$

All classes reduce except the bottom inessential one. (The even level classes are essential)

So there is never any essential irreducible class, so $N P_{n}(f)=0$ for all k.

But f^{2} is the identity, so $N\left(f^{2}\right)=1$, so any preceding system will contain the class at level 1.

All classes reduce except the bottom inessential one. (The even level classes are essential)

So there is never any essential irreducible class, so $N P_{n}(f)=0$ for all k.

But f^{2} is the identity, so $N\left(f^{2}\right)=1$, so any preceding system will contain the class at level 1.

Thus $N \Phi_{n}(f)=1$ but $\sum_{k \mid n} N P_{k}(f)=0$.

The issue here is that we had essential classes at level 2 reducing down to inessential classes at level 1.

The issue here is that we had essential classes at level 2 reducing down to inessential classes at level 1.

Such a class will be counted in $N \Phi_{n}(f)$, but not in $N P_{n}(f)$.

The issue here is that we had essential classes at level 2 reducing down to inessential classes at level 1.

Such a class will be counted in $N \Phi_{n}(f)$, but not in $N P_{n}(f)$.

To get the summation formula, we require that this never happens.
f is essentially reducible if the reduction of an essential class is essential.
f is essentially reducible if the reduction of an essential class is essential.

Theorem
(Heath \& You, 1992) If f is essentially reducible, then

$$
N \Phi_{n}(f)=\sum_{k \mid n} N P_{k}(f) .
$$

f is essentially reducible if the reduction of an essential class is essential.

Theorem
(Heath \& You, 1992) Iff is essentially reducible, then

$$
N \Phi_{n}(f)=\sum_{k \mid n} N P_{k}(f) .
$$

This makes $N \Phi_{n}$ much easier to compute.
f is essentially reducible if the reduction of an essential class is essential.

Theorem
(Heath \& You, 1992) If f is essentially reducible, then

$$
N \Phi_{n}(f)=\sum_{k \mid n} N P_{k}(f) .
$$

This makes $N \Phi_{n}$ much easier to compute.

The essential reducibility condition holds for all maps on tori and all nil and solvmanifolds.

So for nice spaces, $N \Phi_{n}(f)$ can be computed in terms of $N P_{k}(f)$.

So for nice spaces, $N \Phi_{n}(f)$ can be computed in terms of $N P_{k}(f)$.

But it seems reasonable that $N P_{n}(f)$ could be computed in terms of $N \Phi_{n}(f)$ by inclusion-exclusion.

So for nice spaces, $N \Phi_{n}(f)$ can be computed in terms of $N P_{k}(f)$.

But it seems reasonable that $N P_{n}(f)$ could be computed in terms of $N \Phi_{n}(f)$ by inclusion-exclusion.

For example,

$$
\# P_{6}(f)=\# \operatorname{Fix}\left(f^{6}\right)-\# \operatorname{Fix}\left(f^{3}\right)-\# \operatorname{Fix}\left(f^{2}\right)+\# \operatorname{Fix}\left(f^{1}\right)
$$

So for nice spaces, $N \Phi_{n}(f)$ can be computed in terms of $N P_{k}(f)$.

But it seems reasonable that $N P_{n}(f)$ could be computed in terms of $N \Phi_{n}(f)$ by inclusion-exclusion.

For example,

$$
\# P_{6}(f)=\# \operatorname{Fix}\left(f^{6}\right)-\# \operatorname{Fix}\left(f^{3}\right)-\# \operatorname{Fix}\left(f^{2}\right)+\# \operatorname{Fix}\left(f^{1}\right)
$$

We "include" or "exclude" based on how exactly the levels divide one another.

This inclusion-exclusion idea actually works if we assume essential reducibility.

This inclusion-exclusion idea actually works if we assume essential reducibility.

Theorem

If f is essentially reducible, then

$$
N P_{n}(f)=\sum_{\tau \subset p(n)}(-1)^{\# \tau} N \Phi_{n: \tau}(f) .
$$

This inclusion-exclusion idea actually works if we assume essential reducibility.

Theorem
If f is essentially reducible, then

$$
N P_{n}(f)=\sum_{\tau \subset p(n)}(-1)^{\# \tau} N \Phi_{n: \tau}(f) .
$$

This is obtained directly by Möbius inversion of the previous theorem.

There are several other identities based on stronger assumptions of reducibility and other things.

There are several other identities based on stronger assumptions of reducibility and other things.

Sometimes you can even express $N \Phi_{n}(f)$ in terms of various $N\left(f^{k}\right)$.

There are several other identities based on stronger assumptions of reducibility and other things.

Sometimes you can even express $N \Phi_{n}(f)$ in terms of various $N\left(f^{k}\right)$.

In particular this is true for tori.

Let's talk about Wecken theorems.

Let's talk about Wecken theorems.

Is it really true that $N \Phi_{n}(f)=\min \left\{\# \operatorname{Fix}\left(g^{n}\right) \mid g \simeq f\right\}$?

Let's talk about Wecken theorems.

Is it really true that $N \Phi_{n}(f)=\min \left\{\# \operatorname{Fix}\left(g^{n}\right) \mid g \simeq f\right\}$?

And $N P_{n}(f)=\min \left\{\# P_{n}(g) \mid g \simeq f\right\} ?$

Let's talk about Wecken theorems.

Is it really true that $N \Phi_{n}(f)=\min \left\{\# \operatorname{Fix}\left(g^{n}\right) \mid g \simeq f\right\}$?

And $N P_{n}(f)=\min \left\{\# P_{n}(g) \mid g \simeq f\right\} ?$

Probably we'll need to assume manifolds of dimension $\neq 2$.

For $N \Phi_{n}(f)$, the theorem we need is:
Theorem
If X is a manifold of dimension $\neq 2$ and f is a selfmap, then there is some map $g \simeq f$ with

$$
N \Phi_{n}(f)=\# \operatorname{Fix}\left(g^{n}\right)
$$

For $N \Phi_{n}(f)$, the theorem we need is:
Theorem
If X is a manifold of dimension $\neq 2$ and f is a selfmap, then there is some map $g \simeq f$ with

$$
N \Phi_{n}(f)=\# \operatorname{Fix}\left(g^{n}\right)
$$

This was stated by Halpern in 1980 assuming that $\operatorname{dim} X \geq 5$.

For $N \Phi_{n}(f)$, the theorem we need is:
Theorem
If X is a manifold of dimension $\neq 2$ and f is a selfmap, then there is some map $g \simeq f$ with

$$
N \Phi_{n}(f)=\# \operatorname{Fix}\left(g^{n}\right)
$$

This was stated by Halpern in 1980 assuming that $\operatorname{dim} X \geq 5$. Called the "Halpern conjecture."

For $N \Phi_{n}(f)$, the theorem we need is:
Theorem
If X is a manifold of dimension $\neq 2$ and f is a selfmap, then there is some map $g \simeq f$ with

$$
N \Phi_{n}(f)=\# \operatorname{Fix}\left(g^{n}\right)
$$

This was stated by Halpern in 1980 assuming that $\operatorname{dim} X \geq 5$. Called the "Halpern conjecture."

Proved in mid 2000s by Jezierski, for PL-manifolds

For $N \Phi_{n}(f)$, the theorem we need is:
Theorem
If X is a manifold of dimension $\neq 2$ and f is a selfmap, then there is some map $g \simeq f$ with

$$
N \Phi_{n}(f)=\# \operatorname{Fix}\left(g^{n}\right)
$$

This was stated by Halpern in 1980 assuming that $\operatorname{dim} X \geq 5$. Called the "Halpern conjecture."

Proved in mid 2000s by Jezierski, for PL-manifolds, first for $\operatorname{dim} X \geq 4$, then 3.

For $N \Phi_{n}(f)$, the theorem we need is:
Theorem
If X is a manifold of dimension $\neq 2$ and f is a selfmap, then there is some map $g \simeq f$ with

$$
N \Phi_{n}(f)=\# \operatorname{Fix}\left(g^{n}\right)
$$

This was stated by Halpern in 1980 assuming that $\operatorname{dim} X \geq 5$. Called the "Halpern conjecture."

Proved in mid 2000s by Jezierski, for PL-manifolds, first for $\operatorname{dim} X \geq 4$, then 3.

Realizing by a smooth map is different. (Jezierski's talk today)

What about $N P_{n}(f)$? We want to say:

What about $N P_{n}(f)$? We want to say:

If X is a manifold of dimension $\neq 2$ and f is a selfmap, then there is some map $g \simeq f$ with

$$
N P_{n}(f)=\# P_{n}(g)
$$

What about $N P_{n}(f)$? We want to say:

If X is a manifold of dimension $\neq 2$ and f is a selfmap, then there is some map $g \simeq f$ with

$$
N P_{n}(f)=\# P_{n}(g)
$$

This is also true.

What about $N P_{n}(f)$? We want to say:

If X is a manifold of dimension $\neq 2$ and f is a selfmap, then there is some map $g \simeq f$ with

$$
N P_{n}(f)=\# P_{n}(g)
$$

This is also true. (I think)

A stronger Wecken property would be the following:

A stronger Wecken property would be the following:

If X is a manifold of dimension $\neq 2$ and f is a selfmap, then there is some map $g \simeq f$ with

$$
N \Phi_{n}(f)=\# \operatorname{Fix}\left(g^{n}\right) \text { for all } n
$$

A stronger Wecken property would be the following:

If X is a manifold of dimension $\neq 2$ and f is a selfmap, then there is some map $g \simeq f$ with

$$
N \Phi_{n}(f)=\# \operatorname{Fix}\left(g^{n}\right) \text { for all } n
$$

This would be a "simultaneous Wecken theorem".

A stronger Wecken property would be the following:

If X is a manifold of dimension $\neq 2$ and f is a selfmap, then there is some map $g \simeq f$ with

$$
N \Phi_{n}(f)=\# \operatorname{Fix}\left(g^{n}\right) \text { for all } n
$$

This would be a "simultaneous Wecken theorem". (Similarly for $N P_{n}$)

A stronger Wecken property would be the following:

If X is a manifold of dimension $\neq 2$ and f is a selfmap, then there is some map $g \simeq f$ with

$$
N \Phi_{n}(f)=\# F i x\left(g^{n}\right) \text { for all } n
$$

This would be a "simultaneous Wecken theorem". (Similarly for $N P_{n}$)

For $N \Phi_{n}$ this is an open question.

For $N P_{n}$ the simultaneous Wecken theorem does not hold.

For $N P_{n}$ the simultaneous Wecken theorem does not hold.

Recall our example: the antipodal map on S^{2}.

For $N P_{n}$ the simultaneous Wecken theorem does not hold.

Recall our example: the antipodal map on S^{2}.

Here $N P_{n}(f)=0$ for all n, since the class at level 1 is inessential, and all classes at other levels reduce to it.

For $N P_{n}$ the simultaneous Wecken theorem does not hold.

Recall our example: the antipodal map on S^{2}.

Here $N P_{n}(f)=0$ for all n, since the class at level 1 is inessential, and all classes at other levels reduce to it.

The simultaneous Wecken theorem would mean that all periodic points could be removed simultaneously.

In this example $N(f)=0$ but $N\left(f^{2}\right)=1$ so all maps homotopic to f have a periodic point of period 2 .

In this example $N(f)=0$ but $N\left(f^{2}\right)=1$ so all maps homotopic to f have a periodic point of period 2 .

This point could be of minimal period 2, or it could be a fixed point.

In this example $N(f)=0$ but $N\left(f^{2}\right)=1$ so all maps homotopic to f have a periodic point of period 2 .

This point could be of minimal period 2, or it could be a fixed point.

In any case, we cannot remove every periodic point of f simultaneously.

That's all for now!

That's all for now!

Next time, coincidences.

