
Computation of Reidemeister classes by

nilpotentization

P. Christopher Staecker

http://www.messiah.edu/~cstaecker

1



Setting

G is a free (or one-relator orientable surface)

group, and ϕ : G → G is a homomorphism.

Given x, y ∈ G, we say that x ∼ y iff ∃z ∈ G

with

x = ϕ(z)yz−1.

A quotient by this relation forms the set of

Reidemeister classes.

Verifying whether or not two given words are

equivalent is a difficult problem, and no general

algorithm is known.

2



Nielsen theory context

The problem appears in the following context:

Let f be a self-map of an orientable surface
with or without boundary which induces the
homomorphism ϕ : G → G at the fundamental
group level, with

ϕ :
a 7→ a−2c

b 7→ b−1

c 7→ bca−1

A theorem of Fadell and Husseini gives the Rei-
demeister trace (also called generalized Lef-
schetz number):

RT = ρ

(
1−

∂

∂a
ϕ(a)−

∂

∂b
ϕ(b)−

∂

∂c
ϕ(c)

)
= ρ(1 + a−1 + a−2 + b−1 − b)

= [1] + [a−1] + [a−2] + [b−1]− [b]

Now a theorem of Wecken says that L(f) is
the coefficient sum, and N(f) is the number
of distinct terms having nonzero coefficients.

3



Abelianization

We’ll show that [1] 6= [a−1] for the above map-

ping. Let

1 = ϕ(z)a−1z−1,

and project into the abelianization G,

0 = ϕ(z)− a− z.

Since z = ia + jb + kc, we have

0 = i(−2a + c) + j(−b) + k(−a + b + c)

− a− ia− jb− kc

a = (−3i− k)a + (−2j + k)b + ic

and this is verified to have no integer solutions

by a matrix computation.

4



Abelianization often fails to distinguish elements

x, y. It is certainly possible for [x] 6= [y], but

[x] = [y].

We desire a quotient which allows computa-

tion, but retains the structure of G. We ex-

plore projections of the form

pn : G → G/γn(G),

where γn(G) is the nth term of the lower cen-

tral series of G.

The quotient G/γn(G) is a class n nilpotent

group, which we call the class n nilpotentiza-

tion.

5



Computation in nilpotent groups

P. Hall: The following hold in any group,

yx = [x, y]−1xy,

[y, x] = [x, y]−1,

[xy, z] = [x, [y, z]][y, z][x, z].

In a class two nilpotent group, these reduce to:

yx = xy[x, y]−1,

[y, x] = [x, y]−1,

[xy, z] = [x, z][y, z].

So we can put any word from a class 2 nilpo-
tent group into a standard form:

abca = abac[a, c]−1 = a2b[a, b]−1c[a, c]−1

= a2bc[a, b]−1[a, c]−1.

We can write any word as a product of pow-
ers of generators in order, with a product of
commutators in order. By a theorem of Hall
(1954), this form is unique, given the ordering.
This is our tool for distinguishing words.

6



Nilpotentization

We’ll show that [1] 6= [a−2]. Let

1 = ϕ(z)a−2z−1,

and project into G. As before, we set up a

matrix computation, but it gives a solution

z = b + 2c.

Now we project into Ĝ = G/γ2(G):

1̂ = ϕ̂(ẑ)â−2ẑ−1.

We know that ẑ must have the form

ẑ = b̂ĉ2[â, b̂]n1[â, ĉ]n2[̂b, ĉ]n3.

7



1̂ = ϕ̂(ẑ)â−2ẑ−1.

ẑ = b̂ĉ2[â, b̂]n1[â, ĉ]n2[̂b, ĉ]n3.

Now we perform a taxing computation:

ϕ̂(ẑ)â−2ẑ−1 =

[â, b̂]n1−n2−n3+1[â, ĉ]−2n1+1[̂b, ĉ]n1−n2−2n3+3

Setting the above equal to 1̂ gives a matrix

equation: 1 −1 −3
−2 0 0
1 −1 −2


n1
n2
n3

 =

−1
−1
−3



This cannot have an integral solution, and so

[1] 6= [a−2].

8



When does it work?

Good news: If x 6= y, then there is some n

with

pn(x) 6= pn(y),

where pn : G → G/γn(G) is projection to the

class n nilpotentization.

This is because free and one-relator groups are

residually nilpotent.

Bad news: Depending on ϕ, x, y, it is possible

that [x] 6= [y], but

[pn(x)] = [pn(y)]

for every n.

Apparently, the Reidemeister structure is not

always residually nilpotent.

9



Bad news: Example

Example: Let

ϕ :
a 7→ [a, b]
b 7→ [a, c]
c 7→ [b, c−1]

Then ϕ(z) = 0, and so

ϕ(z) + x− z = y

always has a solution. This solution in G can

be used to construct a solution in G/γ2(G),

etc.

So for this ϕ, we have

[pn(x)] = [pn(y)]

for every n, and any words x and y.

10



More bad news

In each step, we require a matrix computation.

If our matrix equation is ever singular with in-

finitely many solutions, then we will be unable

to continue to the next nilpotency class.

Our theorem is:

Theorem. If ϕ has residually nilpotent Rei-

demeister structure and is “totally nonsingu-

lar”, then we have an algorithm to verify that

[x] 6= [y].

11



Verifying that [x] = [y]

Algorithmics is not the issue, since a brute

force enumeration of the group will succeed

in finding z with

ϕ(z)xz−1 = y

if indeed [x] = [y].

Nilpotentization gives a natural improvement

to the brute-force check: Each step gives a

hint as to the structure of the desired z.

In our example above, our check in the abelian-

ization showed that

z = b + 2c.

Thus in our enumeration, we need only check

elements like

bc2, cbc, c2b.

12



If these “class 1 candidates” fail to demon-

strate equality of [x] and [y], do a class 2 nilpo-

tentization check to obtain more structural in-

formation about z.

Combining this candidate checking process with

the above technique for distinguishing classes

gives:

Theorem. If ϕ has residually nilpotent Reide-

meister structure and is totally nonsingular,

then we have an algorithm to compute N(f).

Neither of these conditions is necessary to make

the computation. We only require that the

specific Fox calculus elements be Reidemeister-

distinguishable by nilpotentization, and that

our matrix computations are nonsingular in the

necessary classes. Typically this only requires

n = 2,3,4.

13



Comparison to existing techniques

Nilpotentization is an elaboration on the es-

tablished technique of abelianization, and so is

in general more successful.

For free groups, another technique is Wagner’s

algorithm (1999), which is indeed an algorithm

for computing N(f), provided that the map-

ping has remnant.

Implementations of the three techniques were

written in Magma, and compared.

14



Success Rates

Group Length Nilpn. Abel. Wagner

F2

2 93.99% 82.16% 41.11%
3 90.35% 69.99% 49.19%
4 85.85% 58.53% 54.09%
5 84.55% 51.21% 60.07%

F3

2 91.12% 78.19% 15.43%
3 86.89% 65.64% 24.85%
4 84.78% 55.42% 33.71%
5 84.22% 46.91% 41.05%

F4

2 89.28% 77.00% 5.20%
3 85.17% 64.32% 13.19%
4 84.18% 54.58% 22.29%
5 83.44% 47.30% 30.50%

Each line gives data from 10,000 randomly

generated maps of given word length.

15


