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Given a set of maps: f1, . . . , fk : X → Y , the equalizer set is

Eq(f1, . . . , fk) = {x ∈ X | f1(x) = · · · = fk(x)}

The points where all the functions agree.

For 2 maps, this is the coincidence set.

In fact,
Eq(f1, . . . , fk) =

⋂
i ,j

Coin(fi , fj) =
⋂
i

Coin(f1, fi ).
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X and Y will be closed manifolds.

When X and Y are the same dimension, any two maps can be made to
have finite coincidence set.

Proposition

When X and Y have the same dimension, given f1, . . . , fk : X → Y with
k > 2, we can change the maps by homotopy to be equalizer free.

Make Coin(f1, fi ) finite for each i , then arrange for these sets to be distinct.
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So codimension-zero equalizer theory is uninteresting up to homotopy.

To get something interesting we’ll increase the dimension in the domain.

Then the coincidence sets Coin(f1, fi ) will be submanifolds of X , and it’s
possible that their intersections would be essentially nonempty.
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An example: three maps f , g , h : T 2 → S2 given by (1× 2) matrices:

f = (3 1), g = (0 2) h = (−1 − 1)

We can compute the coincidence sets:

Coin(f , g) is points (x , y) with 3x + y = 0x + 2y mod Z2, which is the
“line” y = 3x mod Z2.
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f = (3 1), g = (0 2) h = (−1 − 1)

We can draw the coincidence sets:
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Coin(f , g)

We have 10 isolated equalizer points.
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In fact we’ll show that in this example any maps homotopic to f , g , h must
have at least 10 equalizers.

We’ll define a Nielsen number (easy matrix formula for tori), and in this
case

N(f , g , h) = 10.
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Oops!

On Tuesday, Peter Wong suggested I have a look at:

Dobreńko, Kucharski, On the generalization of the Nielsen number,
Fundamenta Mathematicae 134:1–14, 1990.

They give a very general theory for maps f : X → Y and a subset B ⊂ Y ,
and a Nielsen theory for counting #f −1(B).

In various special cases, in appropriate codimensional settings, this gives:

I Nielsen fixed point theory (B = ∆)

I root theory (B = pt)

I coincidence theory of k maps (B = ∆ ⊂ Y k)
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Dobreńko, Kucharski, On the generalization of the Nielsen number,
Fundamenta Mathematicae 134:1–14, 1990.

They give a very general theory for maps f : X → Y and a subset B ⊂ Y ,
and a Nielsen theory for counting #f −1(B).

In various special cases, in appropriate codimensional settings, this gives:

I Nielsen fixed point theory (B = ∆)

I root theory (B = pt)

I coincidence theory of k maps (B = ∆ ⊂ Y k)

Staecker (Fairfield U.) Nielsen equalizer theory 8 / 26



Oops!

On Tuesday, Peter Wong suggested I have a look at:
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Dobreńko, Kucharski, On the generalization of the Nielsen number,
Fundamenta Mathematicae 134:1–14, 1990.

They give a very general theory for maps f : X → Y and a subset B ⊂ Y ,
and a Nielsen theory for counting #f −1(B).

In various special cases, in appropriate codimensional settings, this gives:

I Nielsen fixed point theory (B = ∆)

I root theory (B = pt)

I coincidence theory of k maps (B = ∆ ⊂ Y k)

Staecker (Fairfield U.) Nielsen equalizer theory 8 / 26



Oops!

On Tuesday, Peter Wong suggested I have a look at:
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The DK theory treats only the smooth orientable case,

and they don’t
discuss positive codimension coincidence theory.

But the theory is otherwise the same as ours, though developed completely
differently.

My lesson learned:

talk to Peter more often

or. . .

never talk to Peter

With apologies to Dobreńko and Kucharski, let’s continue.
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Our theory is based on a simple trick:

Let f1, . . . fk : X → Y with dim X = (k − 1)n and dim Y = n.

Let F ,G : X → Y k−1 be maps (codimension 0) given by

F (x) = (f1(x), . . . , f1(x)), G (x) = (f2(x), . . . , fk(x)).

Then F ,G are maps of manifolds of the same dimension, and

Eq(f1, . . . , fk) = Coin(F ,G ).
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F (x) = (f1(x), . . . , f1(x)), G (x) = (f2(x), . . . , fk(x))

Eq(f1, . . . , fk) = Coin(F ,G )

This connection is deep enough to build our whole theory, in the case
where dim X = (k − 1)n and dim Y = n.

Theorem
With these dimensions, the maps can be changed by homotopy so that
Eq(f1, . . . , fk) is finite.

Since F ,G are codimension zero maps, we can change them to have finite
coincidence set. Actually we need only change G . Thus we obtain

F = (f1, . . . , f1) G ′ = (f ′2 , . . . , f
′
k)

with Coin(F ,G ′) = Eq(f1, f
′

2 , . . . , f
′
k) finite.
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We get an equalizer index (or semi-index, or Z⊕ Z2 index):

Define ind(f1, . . . , fk ,U) = ind(F ,G ,U).

Easy to show that this is homotopy invariant, and has appropriate other
properties.
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For differentiable maps we can compute the index at a point using
derivative maps:

ind(f1, . . . , fk , x) = ind(F ,G , x)

= sign det(dF − dG )

= sign det


df1 − df2

...
df1 − dfk



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The other ingredient to the theory is the Nielsen equalizer classes.

Again we can define the equalizer classes to be the coincidence classes of
F and G .

Equivalently, x , x ′ ∈ Eq(f1, . . . , fk) are in the same class when

x , x ′ ∈ p Eq(f̃1, α2f̃2, . . . , αk f̃k)

for αi ∈ π1(Y ).
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This is equivalent to making Reidemeister classes π1(Y )k−1/ ∼.

We say (α2, . . . αk) ∼ (β2, . . . , βk) if and only if there is z ∈ π1(X ) with

βi = ϕ1(z)αiϕi (z)−1 for all i
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Also equivalent in terms of paths:

x , x ′ ∈ Eq(f1, . . . , fk) are in the same class when there is a path γ from x
to x ′ with

fi (γ) ' f1(γ) for all i
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A class is essential when its index (or semi-index) is nonzero, and the
number of such classes is N(f1, . . . , fk).

We also get R(f1, . . . fk) and L(f1, . . . , fk) in the usual way.

Also we have a “minimal equalizer number” with

ME (f1, . . . , fk) ≤ N(f1, . . . , fk),

and these are equal when (k − 1)n 6= 2.

For more than 2 maps, this always holds except 3 maps on dimensions
2→ 1.
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We can get all the usual results.

Theorem
If Y is a Jiang space, then all nonempty equalizer classes have the same
index.

Theorem
If f1, . . . , fk : T (k−1)n → T n by matrices A1, . . . ,Ak , then

N(f1, . . . , fk) = abs det

A1 − A2
...

A1 − Ak


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Our old example: f , g , h : T 2 → S1 by

f = (3 1), g = (0 2) h = (−1 − 1).

Then we have

N(f , g , h) = abs det

[
3 −1
4 2

]
= 10.
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Hopefully, this theory is useful for coincidence theory with positive
codimensions:

The set Eq(f1, . . . , fk) includes a lot of information about the coincidence
sets.

For each i , j we have

Eq(α1f̃1, α2f̃2, . . . αk f̃k) ⊂ Coin(αi f̃i , αj f̃j)

So every equalizer class is a subset of a coincidence class.

Theorem
Any coincidence class containing an essential equalizer class must be
geometrically essential.
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Our old example:

�������������������������

�������������������������

�������������������������

TTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTT

/////////////

//////////////////////////

//////////////////////////

//////////////////////////

/////////////

Coin(f , g)

Coin(g , h)

Coin(f , h)

Coin(f , h) has 2 components which are 2 different classes. Are these
classes geometrically essential? Each one contains essential equalizer
points. . . so yes they are essential.

So N(f , h) = 2 in this case. Similarly N(f , g) = N(g , h) = 1.
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In positive dimension coincidence theory, one major problem is judging
essentiality.

There is no coincidence index, but we can use the equalizer index if we
create extra maps.

Start with two maps f1, f2, and a coincidence class C that we want to
show is essential.

We invent a set of maps f3, . . . , fk and show that C contains equalizer
points of nonzero index.

This only works for maps f1, f2 : X → Y with dim Y = n and
dim X = (k − 1)n for some k. (dim X must be a multiple of dim Y )
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But even when dim X isn’t a multiple of dim Y , maybe we can still make it
work.

Take two maps f1, f2 : T 7 → T 2 with matrices A1,A2, and assume that
A2 − A1 has rank 2.

Jezierski, The Nielsen coincidence number of maps into tori, Quaestiones
Mathematicae, 2001
gives a method for finding N(f1, f2) by observing that they restrict to maps
T 2 → T 2, and this restriction respects the Nielsen number.

So Jezierski decreases the domain dimension to get codimension 0.

This only works because T 2 ⊂ T 7.
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Take two maps f1, f2 : T 7 → T 2 with matrices A1,A2, and assume that
A2 − A1 has rank 2.

We do the opposite:

Increase the domain dimension: let f 1, f 2 : T 8 → T 2 by adding columns
of 0s to A1,A2.

Not hard to show that N(f1, f2) = N(f 1, f 2).

Let B1,B2 be matrices of f 1, f 2, and B2 − B1 still has rank 2.
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So we can invent matrices B3, . . .B5 withB2 − B1
...

B5 − B1


of full rank (8).

Thus (f 1, f 2, g3, . . . , g5) has essential equalizer classes and so
N(f1, f2) = N(f 1, f 2) 6= 0

Hopefully this trick can be used elsewhere when we need to prove that
coincidence classes are essential.
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Thank you!

Paper at arxiv: “Nielsen Equalizer Theory”, and in Topology and its
applications
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