Nielsen equalizer theory

P. Christopher Staecker
Fairfield University, Fairfield CT

Capitol Normal University, Beijing China, June 24, 2011

Given a set of maps: $f_{1}, \ldots, f_{k}: X \rightarrow Y$, the equalizer set is

$$
\operatorname{Eq}\left(f_{1}, \ldots, f_{k}\right)=\left\{x \in X \mid f_{1}(x)=\cdots=f_{k}(x)\right\}
$$

The points where all the functions agree.

Given a set of maps: $f_{1}, \ldots, f_{k}: X \rightarrow Y$, the equalizer set is

$$
\operatorname{Eq}\left(f_{1}, \ldots, f_{k}\right)=\left\{x \in X \mid f_{1}(x)=\cdots=f_{k}(x)\right\}
$$

The points where all the functions agree.

For 2 maps, this is the coincidence set.

Given a set of maps: $f_{1}, \ldots, f_{k}: X \rightarrow Y$, the equalizer set is

$$
\operatorname{Eq}\left(f_{1}, \ldots, f_{k}\right)=\left\{x \in X \mid f_{1}(x)=\cdots=f_{k}(x)\right\}
$$

The points where all the functions agree.

For 2 maps, this is the coincidence set.

In fact,

$$
\operatorname{Eq}\left(f_{1}, \ldots, f_{k}\right)=\bigcap_{i, j} \operatorname{Coin}\left(f_{i}, f_{j}\right)
$$

Given a set of maps: $f_{1}, \ldots, f_{k}: X \rightarrow Y$, the equalizer set is

$$
\operatorname{Eq}\left(f_{1}, \ldots, f_{k}\right)=\left\{x \in X \mid f_{1}(x)=\cdots=f_{k}(x)\right\}
$$

The points where all the functions agree.

For 2 maps, this is the coincidence set.

In fact,

$$
\operatorname{Eq}\left(f_{1}, \ldots, f_{k}\right)=\bigcap_{i, j} \operatorname{Coin}\left(f_{i}, f_{j}\right)=\bigcap_{i} \operatorname{Coin}\left(f_{1}, f_{i}\right)
$$

X and Y will be closed manifolds.
X and Y will be closed manifolds.

When X and Y are the same dimension, any two maps can be made to have finite coincidence set.
X and Y will be closed manifolds.

When X and Y are the same dimension, any two maps can be made to have finite coincidence set.

Proposition

When X and Y have the same dimension, given $f_{1}, \ldots, f_{k}: X \rightarrow Y$ with $k>2$, we can change the maps by homotopy to be equalizer free.
X and Y will be closed manifolds.

When X and Y are the same dimension, any two maps can be made to have finite coincidence set.

Proposition

When X and Y have the same dimension, given $f_{1}, \ldots, f_{k}: X \rightarrow Y$ with $k>2$, we can change the maps by homotopy to be equalizer free.

Make $\operatorname{Coin}\left(f_{1}, f_{i}\right)$ finite for each i, then arrange for these sets to be distinct.

So codimension-zero equalizer theory is uninteresting up to homotopy.

So codimension-zero equalizer theory is uninteresting up to homotopy.

To get something interesting we'll increase the dimension in the domain.

So codimension-zero equalizer theory is uninteresting up to homotopy.

To get something interesting we'll increase the dimension in the domain.

Then the coincidence sets $\operatorname{Coin}\left(f_{1}, f_{i}\right)$ will be submanifolds of X, and it's possible that their intersections would be essentially nonempty.

An example: three maps $f, g, h: T^{2} \rightarrow S^{2}$ given by (1×2) matrices:

An example: three maps $f, g, h: T^{2} \rightarrow S^{2}$ given by (1×2) matrices:

$$
f=(31), \quad g=(02) \quad h=(-1-1)
$$

An example: three maps $f, g, h: T^{2} \rightarrow S^{2}$ given by (1×2) matrices:

$$
f=(31), \quad g=(02) \quad h=(-1-1)
$$

We can compute the coincidence sets:

An example: three maps $f, g, h: T^{2} \rightarrow S^{2}$ given by (1×2) matrices:

$$
f=(31), \quad g=(02) \quad h=(-1-1)
$$

We can compute the coincidence sets:

Coin (f, g) is points (x, y) with $3 x+y=0 x+2 y \bmod \mathbb{Z}^{2}$, which is the "line" $y=3 x \bmod \mathbb{Z}^{2}$.

$$
f=(31), \quad g=(02) \quad h=(-1-1)
$$

We can draw the coincidence sets:

$$
f=(31), \quad g=(02) \quad h=(-1-1)
$$

We can draw the coincidence sets:

We have 10 isolated equalizer points.

In fact we'll show that in this example any maps homotopic to f, g, h must have at least 10 equalizers.

In fact we'll show that in this example any maps homotopic to f, g, h must have at least 10 equalizers.

We'll define a Nielsen number (easy matrix formula for tori), and in this case

$$
N(f, g, h)=10
$$

Oops!

On Tuesday, Peter Wong suggested I have a look at:

Oops!

On Tuesday, Peter Wong suggested I have a look at:

Dobreńko, Kucharski, On the generalization of the Nielsen number, Fundamenta Mathematicae 134:1-14, 1990.

Oops!

On Tuesday, Peter Wong suggested I have a look at:

Dobreńko, Kucharski, On the generalization of the Nielsen number, Fundamenta Mathematicae 134:1-14, 1990.

They give a very general theory for maps $f: X \rightarrow Y$ and a subset $B \subset Y$, and a Nielsen theory for counting $\# f^{-1}(B)$.

Oops!

On Tuesday, Peter Wong suggested I have a look at:

Dobreńko, Kucharski, On the generalization of the Nielsen number, Fundamenta Mathematicae 134:1-14, 1990.

They give a very general theory for maps $f: X \rightarrow Y$ and a subset $B \subset Y$, and a Nielsen theory for counting $\# f^{-1}(B)$.

In various special cases, in appropriate codimensional settings, this gives:

- Nielsen fixed point theory $(B=\Delta)$

Oops!

On Tuesday, Peter Wong suggested I have a look at:

Dobreńko, Kucharski, On the generalization of the Nielsen number, Fundamenta Mathematicae 134:1-14, 1990.

They give a very general theory for maps $f: X \rightarrow Y$ and a subset $B \subset Y$, and a Nielsen theory for counting $\# f^{-1}(B)$.

In various special cases, in appropriate codimensional settings, this gives:

- Nielsen fixed point theory $(B=\Delta)$
- root theory $(B=p t)$

Oops!

On Tuesday, Peter Wong suggested I have a look at:

Dobreńko, Kucharski, On the generalization of the Nielsen number, Fundamenta Mathematicae 134:1-14, 1990.

They give a very general theory for maps $f: X \rightarrow Y$ and a subset $B \subset Y$, and a Nielsen theory for counting $\# f^{-1}(B)$.

In various special cases, in appropriate codimensional settings, this gives:

- Nielsen fixed point theory $(B=\Delta)$
- root theory ($B=p t$)
- coincidence theory of k maps $\left(B=\Delta \subset Y^{k}\right)$

The DK theory treats only the smooth orientable case,

The DK theory treats only the smooth orientable case, and they don't discuss positive codimension coincidence theory.

The DK theory treats only the smooth orientable case, and they don't discuss positive codimension coincidence theory.

But the theory is otherwise the same as ours, though developed completely differently.

The DK theory treats only the smooth orientable case, and they don't discuss positive codimension coincidence theory.

But the theory is otherwise the same as ours, though developed completely differently.

My lesson learned:

The DK theory treats only the smooth orientable case, and they don't discuss positive codimension coincidence theory.

But the theory is otherwise the same as ours, though developed completely differently.

My lesson learned:

> talk to Peter more often

The DK theory treats only the smooth orientable case, and they don't discuss positive codimension coincidence theory.

But the theory is otherwise the same as ours, though developed completely differently.

My lesson learned:

> talk to Peter more often
or. . .

The DK theory treats only the smooth orientable case, and they don't discuss positive codimension coincidence theory.

But the theory is otherwise the same as ours, though developed completely differently.

My lesson learned:

> talk to Peter more often
or. . .
never talk to Peter

The DK theory treats only the smooth orientable case, and they don't discuss positive codimension coincidence theory.

But the theory is otherwise the same as ours, though developed completely differently.

My lesson learned:
talk to Peter more often
or. . .
never talk to Peter

With apologies to Dobreńko and Kucharski, let's continue.

Our theory is based on a simple trick:

Our theory is based on a simple trick:

Let $f_{1}, \ldots f_{k}: X \rightarrow Y$ with $\operatorname{dim} X=(k-1) n$ and $\operatorname{dim} Y=n$.

Our theory is based on a simple trick:

Let $f_{1}, \ldots f_{k}: X \rightarrow Y$ with $\operatorname{dim} X=(k-1) n$ and $\operatorname{dim} Y=n$.

Let $F, G: X \rightarrow Y^{k-1}$ be maps (codimension 0) given by

$$
F(x)=\left(f_{1}(x), \ldots, f_{1}(x)\right), \quad G(x)=\left(f_{2}(x), \ldots, f_{k}(x)\right) .
$$

Our theory is based on a simple trick:

Let $f_{1}, \ldots f_{k}: X \rightarrow Y$ with $\operatorname{dim} X=(k-1) n$ and $\operatorname{dim} Y=n$.

Let $F, G: X \rightarrow Y^{k-1}$ be maps (codimension 0) given by

$$
F(x)=\left(f_{1}(x), \ldots, f_{1}(x)\right), \quad G(x)=\left(f_{2}(x), \ldots, f_{k}(x)\right)
$$

Then F, G are maps of manifolds of the same dimension, and

$$
\operatorname{Eq}\left(f_{1}, \ldots, f_{k}\right)=\operatorname{Coin}(F, G)
$$

$$
\begin{gathered}
F(x)=\left(f_{1}(x), \ldots, f_{1}(x)\right), \quad G(x)=\left(f_{2}(x), \ldots, f_{k}(x)\right) \\
\operatorname{Eq}\left(f_{1}, \ldots, f_{k}\right)=\operatorname{Coin}(F, G)
\end{gathered}
$$

This connection is deep enough to build our whole theory, in the case where $\operatorname{dim} X=(k-1) n$ and $\operatorname{dim} Y=n$.

$$
\begin{gathered}
F(x)=\left(f_{1}(x), \ldots, f_{1}(x)\right), \quad G(x)=\left(f_{2}(x), \ldots, f_{k}(x)\right) \\
\operatorname{Eq}\left(f_{1}, \ldots, f_{k}\right)=\operatorname{Coin}(F, G)
\end{gathered}
$$

This connection is deep enough to build our whole theory, in the case where $\operatorname{dim} X=(k-1) n$ and $\operatorname{dim} Y=n$.

Theorem

With these dimensions, the maps can be changed by homotopy so that $\mathrm{Eq}\left(f_{1}, \ldots, f_{k}\right)$ is finite.

$$
\begin{gathered}
F(x)=\left(f_{1}(x), \ldots, f_{1}(x)\right), \quad G(x)=\left(f_{2}(x), \ldots, f_{k}(x)\right) \\
\operatorname{Eq}\left(f_{1}, \ldots, f_{k}\right)=\operatorname{Coin}(F, G)
\end{gathered}
$$

This connection is deep enough to build our whole theory, in the case where $\operatorname{dim} X=(k-1) n$ and $\operatorname{dim} Y=n$.

Theorem

With these dimensions, the maps can be changed by homotopy so that $\mathrm{Eq}\left(f_{1}, \ldots, f_{k}\right)$ is finite.

Since F, G are codimension zero maps, we can change them to have finite coincidence set.

$$
\begin{gathered}
F(x)=\left(f_{1}(x), \ldots, f_{1}(x)\right), \quad G(x)=\left(f_{2}(x), \ldots, f_{k}(x)\right) \\
\operatorname{Eq}\left(f_{1}, \ldots, f_{k}\right)=\operatorname{Coin}(F, G)
\end{gathered}
$$

This connection is deep enough to build our whole theory, in the case where $\operatorname{dim} X=(k-1) n$ and $\operatorname{dim} Y=n$.

Theorem

With these dimensions, the maps can be changed by homotopy so that $\mathrm{Eq}\left(f_{1}, \ldots, f_{k}\right)$ is finite.

Since F, G are codimension zero maps, we can change them to have finite coincidence set. Actually we need only change G.

$$
\begin{gathered}
F(x)=\left(f_{1}(x), \ldots, f_{1}(x)\right), \quad G(x)=\left(f_{2}(x), \ldots, f_{k}(x)\right) \\
\operatorname{Eq}\left(f_{1}, \ldots, f_{k}\right)=\operatorname{Coin}(F, G)
\end{gathered}
$$

This connection is deep enough to build our whole theory, in the case where $\operatorname{dim} X=(k-1) n$ and $\operatorname{dim} Y=n$.

Theorem

With these dimensions, the maps can be changed by homotopy so that $\mathrm{Eq}\left(f_{1}, \ldots, f_{k}\right)$ is finite.

Since F, G are codimension zero maps, we can change them to have finite coincidence set. Actually we need only change G. Thus we obtain

$$
F=\left(f_{1}, \ldots, f_{1}\right) \quad G^{\prime}=\left(f_{2}^{\prime}, \ldots, f_{k}^{\prime}\right)
$$

$$
\begin{gathered}
F(x)=\left(f_{1}(x), \ldots, f_{1}(x)\right), \quad G(x)=\left(f_{2}(x), \ldots, f_{k}(x)\right) \\
\operatorname{Eq}\left(f_{1}, \ldots, f_{k}\right)=\operatorname{Coin}(F, G)
\end{gathered}
$$

This connection is deep enough to build our whole theory, in the case where $\operatorname{dim} X=(k-1) n$ and $\operatorname{dim} Y=n$.

Theorem

With these dimensions, the maps can be changed by homotopy so that $\mathrm{Eq}\left(f_{1}, \ldots, f_{k}\right)$ is finite.

Since F, G are codimension zero maps, we can change them to have finite coincidence set. Actually we need only change G. Thus we obtain

$$
F=\left(f_{1}, \ldots, f_{1}\right) \quad G^{\prime}=\left(f_{2}^{\prime}, \ldots, f_{k}^{\prime}\right)
$$

with $\operatorname{Coin}\left(F, G^{\prime}\right)=\operatorname{Eq}\left(f_{1}, f_{2}^{\prime}, \ldots, f_{k}^{\prime}\right)$ finite.

We get an equalizer index (or semi-index, or $\mathbb{Z} \oplus \mathbb{Z}_{2}$ index):

We get an equalizer index (or semi-index, or $\mathbb{Z} \oplus \mathbb{Z}_{2}$ index):

Define ind $\left(f_{1}, \ldots, f_{k}, U\right)=\operatorname{ind}(F, G, U)$.

We get an equalizer index (or semi-index, or $\mathbb{Z} \oplus \mathbb{Z}_{2}$ index):

Define ind $\left(f_{1}, \ldots, f_{k}, U\right)=\operatorname{ind}(F, G, U)$.

Easy to show that this is homotopy invariant, and has appropriate other properties.

For differentiable maps we can compute the index at a point using derivative maps:

$$
\operatorname{ind}\left(f_{1}, \ldots, f_{k}, x\right)=\operatorname{ind}(F, G, x)
$$

For differentiable maps we can compute the index at a point using derivative maps:

$$
\begin{aligned}
\operatorname{ind}\left(f_{1}, \ldots, f_{k}, x\right) & =\operatorname{ind}(F, G, x) \\
& =\operatorname{sign} \operatorname{det}(d F-d G)
\end{aligned}
$$

For differentiable maps we can compute the index at a point using derivative maps:

$$
\begin{aligned}
\operatorname{ind}\left(f_{1}, \ldots, f_{k}, x\right) & =\operatorname{ind}(F, G, x) \\
& =\operatorname{sign} \operatorname{det}(d F-d G) \\
& =\operatorname{sign} \operatorname{det}\left(\left[\begin{array}{c}
d f_{1}-d f_{2} \\
\vdots \\
d f_{1}-d f_{k}
\end{array}\right]\right)
\end{aligned}
$$

The other ingredient to the theory is the Nielsen equalizer classes.

The other ingredient to the theory is the Nielsen equalizer classes.

Again we can define the equalizer classes to be the coincidence classes of F and G.

The other ingredient to the theory is the Nielsen equalizer classes.

Again we can define the equalizer classes to be the coincidence classes of F and G.

Equivalently, $x, x^{\prime} \in \operatorname{Eq}\left(f_{1}, \ldots, f_{k}\right)$ are in the same class when

$$
x, x^{\prime} \in p \operatorname{Eq}\left(\widetilde{f}_{1}, \alpha_{2} \widetilde{f}_{2}, \ldots, \alpha_{k} \widetilde{f}_{k}\right)
$$

for $\alpha_{i} \in \pi_{1}(Y)$.

This is equivalent to making Reidemeister classes $\pi_{1}(Y)^{k-1} / \sim$.

This is equivalent to making Reidemeister classes $\pi_{1}(Y)^{k-1} / \sim$.

We say $\left(\alpha_{2}, \ldots \alpha_{k}\right) \sim\left(\beta_{2}, \ldots, \beta_{k}\right)$ if and only if there is $z \in \pi_{1}(X)$ with

$$
\beta_{i}=\varphi_{1}(z) \alpha_{i} \varphi_{i}(z)^{-1} \text { for all } i
$$

Also equivalent in terms of paths:

Also equivalent in terms of paths:
$x, x^{\prime} \in \operatorname{Eq}\left(f_{1}, \ldots, f_{k}\right)$ are in the same class when there is a path γ from x to x^{\prime} with

$$
f_{i}(\gamma) \simeq f_{1}(\gamma) \text { for all } i
$$

A class is essential when its index (or semi-index) is nonzero, and the number of such classes is $N\left(f_{1}, \ldots, f_{k}\right)$.

A class is essential when its index (or semi-index) is nonzero, and the number of such classes is $N\left(f_{1}, \ldots, f_{k}\right)$.

We also get $R\left(f_{1}, \ldots f_{k}\right)$ and $L\left(f_{1}, \ldots, f_{k}\right)$ in the usual way.

A class is essential when its index (or semi-index) is nonzero, and the number of such classes is $N\left(f_{1}, \ldots, f_{k}\right)$.

We also get $R\left(f_{1}, \ldots f_{k}\right)$ and $L\left(f_{1}, \ldots, f_{k}\right)$ in the usual way.

Also we have a "minimal equalizer number" with

$$
M E\left(f_{1}, \ldots, f_{k}\right) \leq N\left(f_{1}, \ldots, f_{k}\right)
$$

and these are equal when $(k-1) n \neq 2$.

A class is essential when its index (or semi-index) is nonzero, and the number of such classes is $N\left(f_{1}, \ldots, f_{k}\right)$.

We also get $R\left(f_{1}, \ldots f_{k}\right)$ and $L\left(f_{1}, \ldots, f_{k}\right)$ in the usual way.

Also we have a "minimal equalizer number" with

$$
M E\left(f_{1}, \ldots, f_{k}\right) \leq N\left(f_{1}, \ldots, f_{k}\right)
$$

and these are equal when $(k-1) n \neq 2$.

For more than 2 maps, this always holds except 3 maps on dimensions $2 \rightarrow 1$.

We can get all the usual results.

We can get all the usual results.

Theorem
If Y is a Jiang space, then all nonempty equalizer classes have the same index.

We can get all the usual results.

Theorem

If Y is a Jiang space, then all nonempty equalizer classes have the same index.

Theorem
If $f_{1}, \ldots, f_{k}: T^{(k-1) n} \rightarrow T^{n}$ by matrices A_{1}, \ldots, A_{k}, then

$$
N\left(f_{1}, \ldots, f_{k}\right)=\text { abs det }\left[\begin{array}{c}
A_{1}-A_{2} \\
\vdots \\
A_{1}-A_{k}
\end{array}\right]
$$

Our old example: $f, g, h: T^{2} \rightarrow S^{1}$ by

$$
f=(31), \quad g=(02) \quad h=(-1-1) .
$$

Our old example: $f, g, h: T^{2} \rightarrow S^{1}$ by

$$
f=(31), \quad g=(02) \quad h=(-1-1) .
$$

Then we have

$$
N(f, g, h)=\operatorname{abs} \operatorname{det}\left[\begin{array}{cc}
3 & -1 \\
4 & 2
\end{array}\right]
$$

Our old example: $f, g, h: T^{2} \rightarrow S^{1}$ by

$$
f=(31), \quad g=(02) \quad h=(-1-1) .
$$

Then we have

$$
N(f, g, h)=\operatorname{absdet}\left[\begin{array}{cc}
3 & -1 \\
4 & 2
\end{array}\right]=10
$$

Hopefully, this theory is useful for coincidence theory with positive codimensions:

Hopefully, this theory is useful for coincidence theory with positive codimensions:

The set $\mathrm{Eq}\left(f_{1}, \ldots, f_{k}\right)$ includes a lot of information about the coincidence sets.

Hopefully, this theory is useful for coincidence theory with positive codimensions:

The set $\mathrm{Eq}\left(f_{1}, \ldots, f_{k}\right)$ includes a lot of information about the coincidence sets.

For each i, j we have

$$
\operatorname{Eq}\left(\alpha_{1} \widetilde{f}_{1}, \alpha_{2} \widetilde{f}_{2}, \ldots \alpha_{k} \widetilde{f}_{k}\right) \subset \operatorname{Coin}\left(\alpha_{i} \widetilde{f}_{i}, \alpha_{j} \widetilde{f}_{j}\right)
$$

Hopefully, this theory is useful for coincidence theory with positive codimensions:

The set $\mathrm{Eq}\left(f_{1}, \ldots, f_{k}\right)$ includes a lot of information about the coincidence sets.

For each i, j we have

$$
\operatorname{Eq}\left(\alpha_{1} \widetilde{f}_{1}, \alpha_{2} \widetilde{f}_{2}, \ldots \alpha_{k} \widetilde{f}_{k}\right) \subset \operatorname{Coin}\left(\alpha_{i} \widetilde{f}_{i}, \alpha_{j} \widetilde{f}_{j}\right)
$$

So every equalizer class is a subset of a coincidence class.

Hopefully, this theory is useful for coincidence theory with positive codimensions:

The set $\operatorname{Eq}\left(f_{1}, \ldots, f_{k}\right)$ includes a lot of information about the coincidence sets.

For each i, j we have

$$
\operatorname{Eq}\left(\alpha_{1} \widetilde{f}_{1}, \alpha_{2} \widetilde{f}_{2}, \ldots \alpha_{k} \widetilde{f}_{k}\right) \subset \operatorname{Coin}\left(\alpha_{i} \widetilde{f}_{i}, \alpha_{j} \widetilde{f}_{j}\right)
$$

So every equalizer class is a subset of a coincidence class.

Theorem
Any coincidence class containing an essential equalizer class must be geometrically essential.

Our old example:

Our old example:

Coin (f, h) has 2 components which are 2 different classes.

Our old example:

Coin (f, h) has 2 components which are 2 different classes. Are these classes geometrically essential?

Our old example:

Coin (f, h) has 2 components which are 2 different classes. Are these classes geometrically essential? Each one contains essential equalizer points...

Our old example:

Coin (f, h) has 2 components which are 2 different classes. Are these classes geometrically essential? Each one contains essential equalizer points. . . so yes they are essential.

Our old example:

Coin (f, h) has 2 components which are 2 different classes. Are these classes geometrically essential? Each one contains essential equalizer points... so yes they are essential.

So $N(f, h)=2$ in this case.

Our old example:

Coin (f, h) has 2 components which are 2 different classes. Are these classes geometrically essential? Each one contains essential equalizer points. . . so yes they are essential.

So $N(f, h)=2$ in this case. Similarly $N(f, g)=N(g, h)=1$.

In positive dimension coincidence theory, one major problem is judging essentiality.

In positive dimension coincidence theory, one major problem is judging essentiality.

There is no coincidence index, but we can use the equalizer index if we create extra maps.

In positive dimension coincidence theory, one major problem is judging essentiality.

There is no coincidence index, but we can use the equalizer index if we create extra maps.

Start with two maps f_{1}, f_{2}, and a coincidence class C that we want to show is essential.

In positive dimension coincidence theory, one major problem is judging essentiality.

There is no coincidence index, but we can use the equalizer index if we create extra maps.

Start with two maps f_{1}, f_{2}, and a coincidence class C that we want to show is essential.

We invent a set of maps f_{3}, \ldots, f_{k} and show that C contains equalizer points of nonzero index.

In positive dimension coincidence theory, one major problem is judging essentiality.

There is no coincidence index, but we can use the equalizer index if we create extra maps.

Start with two maps f_{1}, f_{2}, and a coincidence class C that we want to show is essential.

We invent a set of maps f_{3}, \ldots, f_{k} and show that C contains equalizer points of nonzero index.

This only works for maps $f_{1}, f_{2}: X \rightarrow Y$ with $\operatorname{dim} Y=n$ and $\operatorname{dim} X=(k-1) n$ for some k.

In positive dimension coincidence theory, one major problem is judging essentiality.

There is no coincidence index, but we can use the equalizer index if we create extra maps.

Start with two maps f_{1}, f_{2}, and a coincidence class C that we want to show is essential.

We invent a set of maps f_{3}, \ldots, f_{k} and show that C contains equalizer points of nonzero index.

This only works for maps $f_{1}, f_{2}: X \rightarrow Y$ with $\operatorname{dim} Y=n$ and $\operatorname{dim} X=(k-1) n$ for some $k .(\operatorname{dim} X$ must be a multiple of $\operatorname{dim} Y)$

But even when $\operatorname{dim} X$ isn't a multiple of $\operatorname{dim} Y$, maybe we can still make it work.

But even when $\operatorname{dim} X$ isn't a multiple of $\operatorname{dim} Y$, maybe we can still make it work.

Take two maps $f_{1}, f_{2}: T^{7} \rightarrow T^{2}$ with matrices A_{1}, A_{2}, and assume that $A_{2}-A_{1}$ has rank 2.

But even when $\operatorname{dim} X$ isn't a multiple of $\operatorname{dim} Y$, maybe we can still make it work.

Take two maps $f_{1}, f_{2}: T^{7} \rightarrow T^{2}$ with matrices A_{1}, A_{2}, and assume that $A_{2}-A_{1}$ has rank 2.

Jezierski, The Nielsen coincidence number of maps into tori, Quaestiones Mathematicae, 2001
gives a method for finding $N\left(f_{1}, f_{2}\right)$ by observing that they restrict to maps $T^{2} \rightarrow T^{2}$, and this restriction respects the Nielsen number.

But even when $\operatorname{dim} X$ isn't a multiple of $\operatorname{dim} Y$, maybe we can still make it work.

Take two maps $f_{1}, f_{2}: T^{7} \rightarrow T^{2}$ with matrices A_{1}, A_{2}, and assume that $A_{2}-A_{1}$ has rank 2.

Jezierski, The Nielsen coincidence number of maps into tori, Quaestiones Mathematicae, 2001
gives a method for finding $N\left(f_{1}, f_{2}\right)$ by observing that they restrict to maps $T^{2} \rightarrow T^{2}$, and this restriction respects the Nielsen number.

So Jezierski decreases the domain dimension to get codimension 0 .

But even when $\operatorname{dim} X$ isn't a multiple of $\operatorname{dim} Y$, maybe we can still make it work.

Take two maps $f_{1}, f_{2}: T^{7} \rightarrow T^{2}$ with matrices A_{1}, A_{2}, and assume that $A_{2}-A_{1}$ has rank 2.

Jezierski, The Nielsen coincidence number of maps into tori, Quaestiones Mathematicae, 2001
gives a method for finding $N\left(f_{1}, f_{2}\right)$ by observing that they restrict to maps $T^{2} \rightarrow T^{2}$, and this restriction respects the Nielsen number.

So Jezierski decreases the domain dimension to get codimension 0 .

This only works because $T^{2} \subset T^{7}$.

Take two maps $f_{1}, f_{2}: T^{7} \rightarrow T^{2}$ with matrices A_{1}, A_{2}, and assume that $A_{2}-A_{1}$ has rank 2.

Take two maps $f_{1}, f_{2}: T^{7} \rightarrow T^{2}$ with matrices A_{1}, A_{2}, and assume that $A_{2}-A_{1}$ has rank 2.

We do the opposite:

Take two maps $f_{1}, f_{2}: T^{7} \rightarrow T^{2}$ with matrices A_{1}, A_{2}, and assume that $A_{2}-A_{1}$ has rank 2.

We do the opposite:

Increase the domain dimension:

Take two maps $f_{1}, f_{2}: T^{7} \rightarrow T^{2}$ with matrices A_{1}, A_{2}, and assume that $A_{2}-A_{1}$ has rank 2.

We do the opposite:

Increase the domain dimension: let $\bar{f}_{1}, \bar{f}_{2}: T^{8} \rightarrow T^{2}$ by adding columns of 0 s to A_{1}, A_{2}.

Take two maps $f_{1}, f_{2}: T^{7} \rightarrow T^{2}$ with matrices A_{1}, A_{2}, and assume that $A_{2}-A_{1}$ has rank 2.

We do the opposite:

Increase the domain dimension: let $\bar{f}_{1}, \bar{f}_{2}: T^{8} \rightarrow T^{2}$ by adding columns of 0 s to A_{1}, A_{2}.

Not hard to show that $N\left(f_{1}, f_{2}\right)=N\left(\bar{f}_{1}, \bar{f}_{2}\right)$.

Take two maps $f_{1}, f_{2}: T^{7} \rightarrow T^{2}$ with matrices A_{1}, A_{2}, and assume that $A_{2}-A_{1}$ has rank 2.

We do the opposite:

Increase the domain dimension: let $\bar{f}_{1}, \bar{f}_{2}: T^{8} \rightarrow T^{2}$ by adding columns of 0 s to A_{1}, A_{2}.

Not hard to show that $N\left(f_{1}, f_{2}\right)=N\left(\bar{f}_{1}, \bar{f}_{2}\right)$.

Let B_{1}, B_{2} be matrices of \bar{f}_{1}, \bar{f}_{2}, and $B_{2}-B_{1}$ still has rank 2 .

So we can invent matrices $B_{3}, \ldots B_{5}$ with

$$
\left[\begin{array}{c}
B_{2}-B_{1} \\
\vdots \\
B_{5}-B_{1}
\end{array}\right]
$$

of full rank (8).

So we can invent matrices $B_{3}, \ldots B_{5}$ with

$$
\left[\begin{array}{c}
B_{2}-B_{1} \\
\vdots \\
B_{5}-B_{1}
\end{array}\right]
$$

of full rank (8).

Thus $\left(\bar{f}_{1}, \bar{f}_{2}, g_{3}, \ldots, g_{5}\right)$ has essential equalizer classes and so $N\left(f_{1}, f_{2}\right)=N\left(\bar{f}_{1}, \bar{f}_{2}\right) \neq 0$

So we can invent matrices $B_{3}, \ldots B_{5}$ with

$$
\left[\begin{array}{c}
B_{2}-B_{1} \\
\vdots \\
B_{5}-B_{1}
\end{array}\right]
$$

of full rank (8).

Thus $\left(\bar{f}_{1}, \bar{f}_{2}, g_{3}, \ldots, g_{5}\right)$ has essential equalizer classes and so $N\left(f_{1}, f_{2}\right)=N\left(\bar{f}_{1}, \bar{f}_{2}\right) \neq 0$

Hopefully this trick can be used elsewhere when we need to prove that coincidence classes are essential.

Thank you!

Paper at arxiv: "Nielsen Equalizer Theory", and in Topology and its applications

