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Here’s the main result:

Theorem
“Almost all” maps on surfaces with boundary have periodic points of every
period,

and the number of periodic points with period k grows
exponentially in k, and the exponential growth rate is as high as you want,
and the topological entropy is as high as you want.

All methods are homotopy invariant for the maps, and homotopy-type
invariant for the space. So the results hold for surfaces with boundary,
graphs, etc.

“Almost all maps” is measured according to homotopy classes by
asymptotic density.
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The main tool is Nielsen theory, which can keep track of a fixed point set
as it changes throughout a homotopy.

The Nielsen number N(f ) of a selfmap f : X → X is a lower bound for the
number of fixed points of all maps in the homotopy class of X .

Our theorem really is that for “almost all” maps f , the sequence {N(f n)}
is nonzero and grows exponentially in n.
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We measure “almost all” by asymptotic density from combinatorial group
theory.

Since everything is homotopy invariant, we only need to consider the
induced homomorphisms on π1(X ). This is a free group, with a word
length.

We can measure the “length” of a homomorphism in terms of the lengths
of the images of the generators.

There are only finitely many homomorphisms of each length.

Staecker (Fairfield U.) Dynamics of random selfmaps 4 / 17



We measure “almost all” by asymptotic density from combinatorial group
theory.

Since everything is homotopy invariant, we only need to consider the
induced homomorphisms on π1(X ).

This is a free group, with a word
length.

We can measure the “length” of a homomorphism in terms of the lengths
of the images of the generators.

There are only finitely many homomorphisms of each length.

Staecker (Fairfield U.) Dynamics of random selfmaps 4 / 17



We measure “almost all” by asymptotic density from combinatorial group
theory.

Since everything is homotopy invariant, we only need to consider the
induced homomorphisms on π1(X ). This is a free group, with a word
length.

We can measure the “length” of a homomorphism in terms of the lengths
of the images of the generators.

There are only finitely many homomorphisms of each length.

Staecker (Fairfield U.) Dynamics of random selfmaps 4 / 17



We measure “almost all” by asymptotic density from combinatorial group
theory.

Since everything is homotopy invariant, we only need to consider the
induced homomorphisms on π1(X ). This is a free group, with a word
length.

We can measure the “length” of a homomorphism in terms of the lengths
of the images of the generators.

There are only finitely many homomorphisms of each length.

Staecker (Fairfield U.) Dynamics of random selfmaps 4 / 17



We measure “almost all” by asymptotic density from combinatorial group
theory.

Since everything is homotopy invariant, we only need to consider the
induced homomorphisms on π1(X ). This is a free group, with a word
length.

We can measure the “length” of a homomorphism in terms of the lengths
of the images of the generators.

There are only finitely many homomorphisms of each length.

Staecker (Fairfield U.) Dynamics of random selfmaps 4 / 17



For a set of homomorphisms S we can discuss:

D(S) = lim
k→∞

proportion of all length k homoms which lie in S

So D(S) is an asymptotic measure of the proportion of all homomorphisms
which are in S .

Informally D(S) is “the probability that a randomly chosen homomorphism
lies in S”.

Imagine that your “randomly chosen homomorphism” will always be very
long.
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So when I say “almost all maps have property P” or “a random map has
P with probability 1” I mean that D(S) = 1 for the set of homotopy
classes of maps with P.
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Let’s convince you it’s true first. (With pictures.)

Let X be a bouquet of 2 circles, and let f be specified by its induced
homomorphism on the fundamental group.

Here, π1(X ) = 〈a, b〉 is a free group on two generators, and
f# : π1(X )→ π1(X ) looks something like:

f# :
a 7→ abab2

b 7→ b2a−1ba3
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f# :
a 7→ baba2

b 7→ a2b−1ab3

I imagine this map like this picture (a on the right, b on the left):
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f# :
a 7→ baba2

b 7→ a2b−1ab3

I imagine this map like this picture (a on the right, b on the left):

we can see the fixed points.
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We get a fixed point every time c±1 appears inside the word f (c).

How common is this for a “random” map f ?
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Very common!

This much is intuitively clear:

Theorem
For any r , almost all maps have at least r fixed points.

Strange things could happen when you iterate though. Letters giving fixed
points could cancel after iteration, perhaps resulting in fewer fixed points
for f 2 than for f .
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Wagner (’99) and R. F. Brown discussed this remnant condition:

For a homomorphism f# on the group 〈a1, . . . an〉, we say f# has remnant
when there are subwords of each f#(ai ) which never cancel in any product
like

f#(bk)±1f#(ai )f#(ck)±1

So this map has remnant:

f# :
a 7→ ab2ab−1,
b 7→ bab−1ab.

When we iterate a map with remnant, it grows! The remnant subwords
never cancel, and so just keep building up.
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Brown showed that almost all maps have remnant.

We show a stronger property:

Lemma
For any k, almost all f# have remnant subwords which each contain at
least k occurrences of each letter.

We write f# ∈ Sk .

So this map is in S2:

f# :
a 7→ ab2ab−1,
b 7→ bab−1ab.
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It’s not too hard to show:

Theorem
If f# ∈ Sk , then

# Fix(f n) ≥ (km)n − 2m

Immediately we get:

Corollary

I For any r , almost all maps have # Fix(f n) > r for all n.

I For any r , almost all maps have

Growth{# Fix f n} = lim
n→∞

(# Fix f n)1/n > r
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It takes more work, but the above arguments can be adapted using
techniques by Hart, Heath, Keppelmann (‘08) to hold for sets of minimal
periodic points (not just Fix f n).
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Jiang (‘96) connected these things to topological entropy.

Let N∞(f ) = Growth{N(f n)}, and Jiang showed that N∞(f ) is always
finite on compact polyhedra.

But we show that for any r , almost all maps have N∞(f ) > r .

So the growth of # Fix(f n) for almost all f is exponential with arbitrarily
high (but finite) growth rate.
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Jiang also showed that log N∞(f ) ≤ h(f ), where h is the topological
entropy of f . This is an interesting homotopy invariant lower bound for
the entropy.

Our results immediately give:

Corollary

Given any r , almost all maps have h(f ) > r .

We show the same result for the fundamental group entropy h#(f ).
(Though generally h(f ) ≥ h#(f ).)

Staecker (Fairfield U.) Dynamics of random selfmaps 16 / 17



Jiang also showed that log N∞(f ) ≤ h(f ), where h is the topological
entropy of f . This is an interesting homotopy invariant lower bound for
the entropy.

Our results immediately give:

Corollary

Given any r , almost all maps have h(f ) > r .

We show the same result for the fundamental group entropy h#(f ).
(Though generally h(f ) ≥ h#(f ).)

Staecker (Fairfield U.) Dynamics of random selfmaps 16 / 17



Jiang also showed that log N∞(f ) ≤ h(f ), where h is the topological
entropy of f . This is an interesting homotopy invariant lower bound for
the entropy.

Our results immediately give:

Corollary

Given any r , almost all maps have h(f ) > r .

We show the same result for the fundamental group entropy h#(f ).
(Though generally h(f ) ≥ h#(f ).)

Staecker (Fairfield U.) Dynamics of random selfmaps 16 / 17



Thank you!

Paper at arxiv: Kim, Staecker Dynamics of random selfmaps of surfaces
with boundary

Or my website: http://faculty.fairfield.edu/cstaecker
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