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Goal:

Describe every possible type of notion of “bigness” for subsets in
space.

Hadwiger’s Theorem:
If v is a measure of bigness for sets in Rn, then v must have the form . . .
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every possible type of measure of “bigness” for subsets in space

“measure of bigness for subsets in space” means a function v which
assigns a real number “size” to a subset of Rn

Such a function should obey three properties:

I Rigid-motion invariant The size never changes if you translate or
rotate the set

I Continuity The size changes a little bit if we change the set a little bit

I Valuation v(∅) = 0 and

v(A ∪ B) = v(A) + v(B)− v(A ∩ B).

“inclusion-exclusion”
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v(A ∪ B) = v(A) + v(B)− v(A ∩ B)

Split it into subsets A and B.

Then this says:

v


 = v

 +v

 −v
 

Staecker (Fairfield U.) All kinds of big: Hadwiger’s theorem 5 / 58



v(A ∪ B) = v(A) + v(B)− v(A ∩ B)

Split it into subsets A and B.
Then this says:

v


 = v

 +v

 −v
 

Staecker (Fairfield U.) All kinds of big: Hadwiger’s theorem 5 / 58



v(A ∪ B) = v(A) + v(B)− v(A ∩ B)

Split it into subsets A and B.

Then this says:

v


 = v

 +v

 −v
 

Staecker (Fairfield U.) All kinds of big: Hadwiger’s theorem 5 / 58



v(A ∪ B) = v(A) + v(B)− v(A ∩ B)

Split it into subsets A and B.

Then this says:

v


 = v

 +v

 −v
 

Staecker (Fairfield U.) All kinds of big: Hadwiger’s theorem 5 / 58



v(A ∪ B) = v(A) + v(B)− v(A ∩ B)

Split it into subsets A and B.

Then this says:

v


 = v

 +v

 −v
 

Staecker (Fairfield U.) All kinds of big: Hadwiger’s theorem 5 / 58



v(A ∪ B) = v(A) + v(B)− v(A ∩ B)

Split it into subsets A and B.
Then this says:

v


 = v

 +v

 −v
 

Staecker (Fairfield U.) All kinds of big: Hadwiger’s theorem 5 / 58



So by “measure of bigness” we technically mean:

A continuous invariant valuation defined on subsets of Rn

Big words, but this is the bare minimum of what “bigness” could mean.

The area is one such function, but there are many others.
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Technical interlude:

Actually we need to be a bit careful about what kinds of subsets are
allowed. Crazy subsets will mess up the theory.

If any subsets are allowed, we’ll have the “Banach-Tarski Paradox”: a set
whose volume is 1 can be chopped up into crazy subsets and reassembled
so that the volume is 2.

Moral: volume and area of “pathological” sets don’t add up the way we
expect.
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To disallow this kind of pathological behavior, we will require our subsets
to be closed and “polyconvex”.

A set is convex when the straight line connecting any two points in the set
lies entirely in the set.

Polyconvex means any finite union of convex sets.

Any polygonal-type shape is polyconvex, and any “ordinary” shape you
can think of is arbitrarily close to a polyconvex set.

Our continuity assumption is actually “continuity on convex sets”
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Some examples of continuous invariant valuations:

In R2, the area.

v


 = v

 +v

 −v
 

Also the perimeter!
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In R3:

we have:

I the surface area: 3 · 4π = 12π

I the “perimeter”: 3

I the volume: 3 · ( 4
3π) = 4π
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I the volume:

3 dimensional size

I the surface area: size of the 2 dimensional “edge”

I the “perimeter”: size of the 1 dimensional “edge” (if any)

These are the intrinsic volumes of dimension 3, 2, 1.

For higher dimensional spaces, there are higher dimensional intrinsic
volumes.
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The intrinsic volumes in each dimension are continuous invariant
valuations.

Are there any others?

Yes there are.
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Our goal is to describe all possible continuous invariant valuations.

“All kinds of big”
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Besides the intrinsic volumes, are there any other continuous invariant
valuations?

Stupid answer: “2 times the area” (it’s not the same as the area!)

Actually any continuous invariant valuation can be multiplied by a
constant and the result is another continuous invariant valuation.

Really stupid answer: zero
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You could also do “perimeter plus area”

Any sum of two continuous invariant valuations is a continuous invariant
valuation.

So the set of continuous invariant valuations is a vectorspace.

So there are infinitely many of them, but we can still try to find a basis for
the space.
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Other than the intrinsic volumes, are there any other really different
continuous invariant valuations?

There are!
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Define a valuation χ like so:

If A is convex, then χ(A) = 1. Otherwise,
compute χ in terms of smaller convex sets using the valuation property.

So for this:

we have χ(X ) = 1.
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What about this:

Not convex, so break it up.

χ

( )
= χ

( )
+ χ

( )
+ χ

( )
+ χ

( )
− χ(��� )− χ(��� )− χ(��� )− χ(��� )

= 1 + 1 + 1 + 1− 1− 1− 1− 1 = 0
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We can do this computation in a more systematic way:

Make a triangulation. Decompose the space as faces, edges, vertices.

Then χ is:
(#faces)− (#edges) + (#vertices)
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This is the Euler characteristic!

So the continuous invariant valuations in Rn include:

I The intrinsic volumes of dimensions 1, . . . , n

I The Euler characteristic (“the intrinsic volume of dimension 0”)

I any linear combination of these

Any more?

No!
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Hadwiger’s Theorem (1957) The intrinsic volumes of dimension 0, . . . , n
are a basis for the vectorspace of continuous invariant valuations on Rn.

So any measure of bigness is some (unique) combination of intrinsic
volumes and Euler characteristic.

In R3, this means that any measure of bigness has the specific form:

v(X ) = c0χ(X ) + c1P(X ) + c2A(X ) + c3V (X )

where χ is the Euler characteristic, v1 is the perimeter, v2 is the surface
area, v3 is the volume, and ci are constants.
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This is actually a beautiful theorem.

The valuation property seems very general. Many many functions ought
to obey this.

But it turns out that the valuation property is very restrictive.

The classification is much simpler than it should be.
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Topologically this is very interesting:

The Euler characteristic is the only topologically invariant valuation.

Much of topology is about assigning “invariants” to spaces based on their
structure, and the valuation property is a very natural kind of thing that
we’d want to satisfy.

Similar properties exist for fundamental groups (Van Kampen’s theorem)
and homology groups (Mayer-Vietoris sequence)

If your invariant is going to be a R-valued valuation, it must be the Euler
characteristic.
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What remains:

I Why it’s true

I Real-world applications
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Why it’s true

Let’s try to give an idea of why any continuous invariant valuation must
be some intrinsic volume.

(Some familiar big ideas coming)

The intrinsic volumes break down nicely into dimensions.

Let’s just show that the only “dimension 2” valuation in R2 is the area.

Specifically we’ll show that the only (continuous invariant) valuation
(which is zero on sets of dimension less than 2) is (a constant times) the
area.
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Why it’s true

Let v be any continuous invariant valuation in R2 which is zero on sets of
dimension less than 2

We’ll show that v(X ) = c · A(X ) where A is the area.

First consider the unit square S : it has some value v(S) = c .

By invariance, any square of area 1 will have value v(S) = c .
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Why it’s true

By the valuation property:

c = v

  = v

 + v

 − v
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Why it’s true
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Why it’s true

So v on the unit square has value c · 1

v on this rectangle with area 1/2 has value c · 1
2 .

By cutting up different ways, easy to show that v on a rectangle with area
q ∈ Q is c · q.

Already it’s starting to look like v is always just c times the area, but we
showed it only for rectangles.
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Why it’s true

What if our shape isn’t a rectangle?

Just break it up into rectangles!

For a shape like this, still v must be c times the actual area.
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Why it’s true

What if the shape is curvy?

Cover it with rectangles!
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Why it’s true

COVER IT WITH RECTANGLES!

The area of the “rectified” region is close to the area of the curved region,

and as the rectanglular approximations get smaller, the rectified area
approaches the actual area.

Is the same true for v?
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Why it’s true

We already know v is c times the area for the rectified areas.

Will it also be true for the curvy area?

It will because v is continuous!
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Why it’s true

The whole idea at once

Say v has value c on the unit square.

The value on the square dictates exactly what the value must be on any
rectangles, and this dictates the value on any curvy area.

So any dimension 2 measurement which can be “broken down” additively
must actually be the area (times a constant).
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Real-world applications

Real-world applications

Any continuous invariant valuation is a combination of intrinsic volumes.

Most things in nature are continuous and invariant.

So if you encounter a valuation in nature, it must be a combination of
intrinsic volumes.

What I’m about to say is mostly true.
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Real-world applications

Some examples are collected in: “Additivity, Convexity, and Beyond:
Applications of Minkowski Functionals in Statistical Physics” by Mecke
(2000)

74 pages!

One is “curvature energy of a membrane”.

Given a flexible flat membrane (zero or uniform thickness), how much
energy is required to bend it?

This will depend on what the membrane is made of, its temperature, etc.

Let’s ignore all that- assume constant temperature, etc. We care only
about the shape of it.
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Real-world applications

What could the curvature energy depend on? (in terms of the shape)

Obviously it might depend on the total area. But how exactly?

Probably something like

E ∝ A2.4 + A logA− 8e
√
A

Actually we have no idea.
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Real-world applications

Beyond just the area, it probably depends somehow on the shape.

Specifically: Is the curvature energy the same for these?

They have the same area, but they’re different shapes.
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Real-world applications

How about these?

How about these?
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Real-world applications

So we expect the curvature energy to depend on the shape, probably in a
very complicated way.

The best imaginable goal would be a simple mathematical formula for E in
terms of some geometric information. But this seems probably impossible.

But it turns out the curvature energy is a valuation:

E

  = E

 +E

 −E
 

It is obviously continuous and invariant.
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Real-world applications

So by Hadwiger’s theorem the curvature energy must have this form:

E (X ) = c1χ(X ) + c2P(X ) + c3A(x)

where χ is the Euler characteristic, P is the perimeter, and A is the area.

This is a very simple formula for E obtained purely mathematically! (no
experiments necessary)

The only things we need to test experimentally are the constants.

Staecker (Fairfield U.) All kinds of big: Hadwiger’s theorem 48 / 58



Real-world applications

So by Hadwiger’s theorem the curvature energy must have this form:

E (X ) = c1χ(X ) + c2P(X ) + c3A(x)

where χ is the Euler characteristic, P is the perimeter, and A is the area.

This is a very simple formula for E obtained purely mathematically! (no
experiments necessary)

The only things we need to test experimentally are the constants.

Staecker (Fairfield U.) All kinds of big: Hadwiger’s theorem 48 / 58



Real-world applications

So by Hadwiger’s theorem the curvature energy must have this form:

E (X ) = c1χ(X ) + c2P(X ) + c3A(x)

where χ is the Euler characteristic, P is the perimeter, and A is the area.

This is a very simple formula for E obtained purely mathematically! (no
experiments necessary)

The only things we need to test experimentally are the constants.

Staecker (Fairfield U.) All kinds of big: Hadwiger’s theorem 48 / 58



Real-world applications

We can even answer conclusively each of the questions above.

Remember the curvature energy depends only on area, perimeter, and
Euler characteristic.

Is the curvature energy the same for these?

No- different perimeters.
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Real-world applications

Is the curvature energy the same for these?

Yes- same areas, same perimeters, same Euler characteristic.
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Real-world applications

Is the curvature energy the same for these?

Probably not- same areas & perimeters, but different Euler characteristic.
(top is 0, bottom is 1)
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Real-world applications

So if you encounter a valuation in nature, Hadwiger’s theorem gives you a
formula for free.

Other examples from “Additivity, Convexity, and Beyond” are

I Percolation in porous solids

I “Hearing the shape of a drum”
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Real-world applications

How I came to this

I’m interested in the Euler characteristic, and there is another theorem by
Watts, which looks just like Hadwiger’s theorem in dimension 0.

Theorem
(Hadwiger) The Euler characteristic χ is the unique function with:

I χ(A ∪ B) = χ(A) + χ(B)− χ(A ∩ B)

I When X is convex, χ(X ) = 1

Theorem
(Watts, 1962) The “reduced Euler characteristic” χ = χ− 1 is the unique
function with:

I When A ⊆ B, χ(B) = χ(A)− χ(B/A)

I χ(S0) = 1
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Real-world applications

My research is in topological fixed point theory.

A major tool is the Lefschetz number L(f ) of a map from a space to itself.

Always L(id) = χ(X ), so L(f ) is a generalization of the Euler
characteristic.

Think of L(f ) like an Euler characteristic for a function.
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Real-world applications

From 1962 we have Watts’s theorem about “χ is the unique function
satisfying. . . ”

We should try to prove the same thing about L(f ).

In 2004, Arkowitz & Brown proved that L(f ) is the unique function
satisfying . . . ”

Also in 2004, Furi, Pera, & Spadini proved another uniqueness theorem for
L(f ).

I did some stuff with this too.
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Real-world applications

So when I saw Hadwiger’s theorem, I knew immediately that it would give
yet another theorem about L(f ).

Theorem
There is a unique function Λ : N(X )→ R satisfying:

I Let A,B be subcomplexes of some common subdivision of X . Then
Λ(f , ∅) = 0, and

Λ(f ,A ∪ B) = Λ(f ,A) + Λ(f ,B)− Λ(f ,A ∩ B).

I Let f be a Hopf simplicial map and x be a simplex. If x is not a
maximal simplex we have Λ(f , x) = 0, and if x is a maximal simplex
we have

Λ(f , x) = (−1)dimX c(f , x).

I Λ(f ,A) depends continuously on f .
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Real-world applications

Why hadn’t anybody else done this?

People in fixed point theory don’t know about Hadwiger’s theorem.

This is called: “low-hanging fruit”

Currently looking at higher dimensions.
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Real-world applications

That’s all!
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