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Axioms for the Lefschetz number and fixed point index have been around
for a while.

A few major axiomatizations:

O’Neill (1953) Fixed point index for continuous maps on compact
polyhedra.

Furi, Pera, & Spadini (2004) Fixed point index for continuous maps on
differentiable (C 1) manifolds.

Arkowitz & Brown (2004) Lefschetz number for continuous maps on
compact polyhedra.
Based on axioms for χ(X ) by Watts.
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Arkowitz & Brown (2004)

for continuous maps on compact polyhedra:

Theorem
The “reduced Lefschetz number” is the unique Z-valued function
satisfying:

I (Homotopy) If f ' g, then L(f ) = L(g)

I (Cofibration) If A ⊂ X is a subpolyhedron and f induces maps on A
and X/A, then

L(f ) = L(fA) + L(fX/A)

I (Wedge of circles) If f is a map on a wedge of k circles, then

L(f ) = −(deg(f1) + · · ·+ deg(fk))

I (Commutativity) L(f ◦ g) = L(g ◦ f )
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Furi, Pera, & Spadini (2004)

for continuous maps on C 1 manifolds:

Theorem
The fixed point index is the unique R-valued function satisfying:

I (Homotopy) If f ' g, then ind(f ,U) = ind(g ,U)

I (Disjoint additivity) If Fix(f ) ∩ U ⊂ A t B, then

ind(f ,U) = ind(f ,A) + ind(f ,B)

I (Constant map) If c is a constant map, then

ind(c ,X ) = 1
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Each scheme has:

I Homotopy

I Addition (“cofibration”, “additivity”)

I A basic computation (“wedge-of-circles”, “constant map”)

Some also have the commutativity property.
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Extensions

The A&B and FPS systems have been recently generalized in various ways:

FP&S:

I

I

I

A&B:

I

A&B seems hard to extend to coincidence theory,
FP&S seems hard to do for nonmanifolds. (without commutativity)
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Hadwiger’s Theorem

Our scheme for L(f ) is based on Hadwiger’s Theorem (1950s), for
subcomplexes of an abstract simplicial complex:

Theorem
(Hadwiger) The Euler characteristic is the unique R-valued function on
subcomplexes of a simplicial complex satisfying:

I (Valuation axiom) χ(∅) = 0 and if A, B are subcomplexes of X , then

χ(A ∪ B) = χ(A) + χ(B)− χ(A ∩ B)

I (Simplex axiom) If x is a simplex, then χ(x) = 1.
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Hadwiger’s Theorem is an approach to the Euler characteristic “without
algebraic topology”.

Comes from a well-developed theory of lattice valuations.

If we consider subcomplexes of a complex, this forms a “distributive
lattice”

Two operations ∩ and ∪ which are commutative, associative, distributive,
with a few more properties.
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Hadwiger’s result is obvious if you believe the following Lemma:

Lemma
Any valuation on a complex is determined uniquely by its values on
simplices, which may be assigned arbitrarily.

To prove the Lemma: just check that, when you assign values to the
simplices, the valuation property gives a unique well-defined extension to
the whole complex.

From the lemma, there must be a unique valuation which is 1 on
simplices, and we know it is the Euler characteristic.

We’ll use the same lemma for our result.
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L(f ) is slightly more complicated than χ:

we need maps too.

For a complex X , let M(X ) be the set of pairs (f ,A) where f : X → X is
a simplicial selfmap and A ⊂ X is a subcomplex.

Theorem
There is a unique function L : M(X )→ R satisfying:

I (Valuation axiom) L(f , ∅) = 0 and if A, B are subcomplexes of X ,
then

L(f ,A ∪ B) = L(f ,A) + L(f ,B)− L(f ,A ∩ B)

I (Simplex axiom) If x is a simplex, then and

L(f , x) = (−1)dim xc(f , x) + L(f , ∂x).
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L(f , x) = (−1)dim xc(f , x) + L(f , ∂x).

Here ∂x is the boundary of x .

c(f , x) ∈ {−1, 0, 1} is the orientation of how x maps onto itself:

If f (x) 6= x then c(f , x) = 0.
If f (x) = x then c(f , x) = ±1 depending on the orientation.
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This c(f , x) should look familiar –

it’s the coefficient on x in fq(x), the
chain map.

Adding these up, it’s easy to verify that

L(f ,X ) =
∑
q

(−1)q tr(fq : Cq(X )→ Cq(X )),

and so
L(f ,X ) =

∑
q

(−1)q tr(f∗q : Hq(X )→ Hq(X ))

as expected.

Note: we obtain this trace formula even without assuming a homotopy
invariance axiom.
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Note: we obtain this trace formula even without assuming a homotopy
invariance axiom.
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We want to extend this to continuous maps on polyhedra.

The usual approach is to use a simplicial approximation to the map.

But our setting above is simplicial maps X → X , which is too restrictive.

To use simplicial approximations we need to subdivide the domain.

So we need a “subdivision” version of the theorem.
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Let M ′(X ) be the set of pairs (f ,A), where A is a subcomplex of some
subdivision X ′ of X , and f : X ′ → X is simplicial.

Theorem
There is a unique function L : M ′(X )→ R satisfying:

I (Valuation axiom) L(f , ∅) = 0 and if A, B are subcomplexes of a
common subdivision of X , then

L(f ,A ∪ B) = L(f ,A) + L(f ,B)− L(f ,A ∩ B)

I (Simplex axiom) If x is a simplex, then

L(f , x) = (−1)dim xc(f , x) + L(f , ∂x).
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This setting now allows for subdivisions, we can do simplicial
approximations to continuous maps.

Our final setting is continuous maps on compact polyhedra:

Let X be a compact polyhedron, and let N(X ) be the set of pairs (f ,A)
where f : X → X is continuous and A is a subpolyhedron of some
subdivision of X .

Then our previous arguments suffice in this setting, using a homotopy
property to get simplicial approximations.
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Theorem
There is a unique function Λ : N(X )→ R satisfying:

I (Homotopy axiom) If f ' g, then Λ(f ,A) = Λ(g ,A).

I (Valuation axiom) Λ(f , ∅) = 0 and if A, B are subpolyhedra of a
common subdivision of X , then

Λ(f ,A ∪ B) = Λ(f ,A) + Λ(f ,B)− Λ(f ,A ∩ B)

I (Simplicial map axiom) If f is simplicial and x is a simplex, then

Λ(f , x) = (−1)dim xc(f , x) + Λ(f , ∂x).
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Idea:

Replace f by a simplicial approximation using the homotopy axiom

Previous theorem gets the uniqueness

Need to check that alternative homotopies don’t change the value, but we
already have the trace formula which is homotopy invariant.

Staecker (Fairfield U.) Axioms for L(f ) as a valuation 17 / 24



Idea:

Replace f by a simplicial approximation using the homotopy axiom

Previous theorem gets the uniqueness

Need to check that alternative homotopies don’t change the value, but we
already have the trace formula which is homotopy invariant.

Staecker (Fairfield U.) Axioms for L(f ) as a valuation 17 / 24



Idea:

Replace f by a simplicial approximation using the homotopy axiom

Previous theorem gets the uniqueness

Need to check that alternative homotopies don’t change the value, but we
already have the trace formula which is homotopy invariant.

Staecker (Fairfield U.) Axioms for L(f ) as a valuation 17 / 24



Idea:

Replace f by a simplicial approximation using the homotopy axiom

Previous theorem gets the uniqueness

Need to check that alternative homotopies don’t change the value,

but we
already have the trace formula which is homotopy invariant.

Staecker (Fairfield U.) Axioms for L(f ) as a valuation 17 / 24



Idea:

Replace f by a simplicial approximation using the homotopy axiom

Previous theorem gets the uniqueness

Need to check that alternative homotopies don’t change the value, but we
already have the trace formula which is homotopy invariant.

Staecker (Fairfield U.) Axioms for L(f ) as a valuation 17 / 24



Actually we can do better-

use the Hopf construction and you can put all
fixed points in the interior of maximal simplicies.

Call such a map a Hopf simplicial map.

A Hopf simplicial map has no fixed points on the boundaries, so in

Λ(f , x) = (−1)dim xc(f , x) + Λ(f , ∂x),

we’ll always have Λ(f , ∂x) = 0.
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So we get a weaker simplicial map axiom:

Theorem
There is a unique function Λ : N(X )→ R satisfying:

I (Homotopy axiom) If f ' g, then Λ(f ,A) = Λ(g ,A).

I (Valuation axiom) If A, B are subpolyhedra of a common subdivision
of X , then Λ(f , ∅) = 0 and

Λ(f ,A ∪ B) = Λ(f ,A) + Λ(f ,B)− Λ(f ,A ∩ B)

I (Hopf simplicial map axiom) Let f be Hopf simplicial. If x is a
nonmaximal simplex then L(f , x) = 0. If x is a maximal simplex, then

Λ(f , x) = (−1)dimX c(f , x).
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Can we weaken the homotopy axiom?

We can’t just remove it, since L(f ,A) would be undefined when f is not
simplicial.

But the simplicial approximation theorem and Hopf construction require
only small homotopies.

Actually the set of Hopf simplicial maps with fixed points in maximal
simplices is a dense set in XX , the space of selfmaps.
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Since the valuation and simplicial map axioms determine Λ on a dense set,
we need only assume continuity of Λ to have uniqueness on all of XX .

“Homotopy invariance” means that Λ is constant on path components of
XX .

A “continuity axiom” is weaker.
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So our final result is:

Theorem
There is a unique function Λ : N(X )→ R satisfying:

I (Continuity axiom) The value Λ(f ,A) depends continuously on
f ∈ XX .

I (Valuation axiom) If A, B are subpolyhedra of a common subdivision
of X , then Λ(f , ∅) = 0 and

Λ(f ,A ∪ B) = Λ(f ,A) + Λ(f ,B)− Λ(f ,A ∩ B)

I (Hopf simplicial map axiom) Let f be Hopf simplicial. If x is a
nonmaximal simplex then L(f , x) = 0. If x is a maximal simplex, then

Λ(f , x) = (−1)dimX c(f , x).
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By the way, a similar weakening may be possible in the FPS approach.

Conjecture

The fixed point index is the unique R-valued function satisfying the
following axioms:

I (Continuity) ind(f ,U) depends continuously on f ∈ XX

I (Additivity) If Fix(f ) ∩ U ⊂ U1 t U2, then

ind(f ,U) = ind(f ,U1) + ind(f ,U2)

I (Constant map) If c is a constant map, then

ind(c ,U) = 1

Not sure if this will work for the A&B approach.
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Thanks!
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