# Axioms for the Lefschetz number as a lattice valuation 

P. Christopher Staecker

Fairfield University, Fairfield CT

Nielsen Theory and Related Topics 2013

Axioms for the Lefschetz number and fixed point index have been around for a while.

Axioms for the Lefschetz number and fixed point index have been around for a while. A few major axiomatizations:

Axioms for the Lefschetz number and fixed point index have been around for a while. A few major axiomatizations:

O'Neill (1953) Fixed point index for continuous maps on compact polyhedra.

Axioms for the Lefschetz number and fixed point index have been around for a while. A few major axiomatizations:

O'Neill (1953) Fixed point index for continuous maps on compact polyhedra.

Furi, Pera, \& Spadini (2004) Fixed point index for continuous maps on differentiable $\left(C^{1}\right)$ manifolds.

Axioms for the Lefschetz number and fixed point index have been around for a while. A few major axiomatizations:

O'Neill (1953) Fixed point index for continuous maps on compact polyhedra.

Furi, Pera, \& Spadini (2004) Fixed point index for continuous maps on differentiable ( $C^{1}$ ) manifolds.

Arkowitz \& Brown (2004) Lefschetz number for continuous maps on compact polyhedra.

Axioms for the Lefschetz number and fixed point index have been around for a while. A few major axiomatizations:

O'Neill (1953) Fixed point index for continuous maps on compact polyhedra.

Furi, Pera, \& Spadini (2004) Fixed point index for continuous maps on differentiable ( $C^{1}$ ) manifolds.

Arkowitz \& Brown (2004) Lefschetz number for continuous maps on compact polyhedra.
Based on axioms for $\chi(X)$ by Watts.

## Arkowitz \& Brown (2004)

for continuous maps on compact polyhedra:
Theorem
The "reduced Lefschetz number" is the unique $\mathbb{Z}$-valued function satisfying:

## Arkowitz \& Brown (2004)

for continuous maps on compact polyhedra:
Theorem
The "reduced Lefschetz number" is the unique $\mathbb{Z}$-valued function satisfying:

- (Homotopy) If $f \simeq g$, then $\bar{L}(f)=\bar{L}(g)$


## Arkowitz \& Brown (2004)

for continuous maps on compact polyhedra:
Theorem
The "reduced Lefschetz number" is the unique $\mathbb{Z}$-valued function satisfying:

- (Homotopy) If $f \simeq g$, then $\bar{L}(f)=\bar{L}(g)$
- (Cofibration) If $A \subset X$ is a subpolyhedron and $f$ induces maps on $A$ and $X / A$, then

$$
\bar{L}(f)=\bar{L}\left(f_{A}\right)+\bar{L}\left(f_{X / A}\right)
$$

## Arkowitz \& Brown (2004)

for continuous maps on compact polyhedra:
Theorem
The "reduced Lefschetz number" is the unique $\mathbb{Z}$-valued function satisfying:

- (Homotopy) If $f \simeq g$, then $\bar{L}(f)=\bar{L}(g)$
- (Cofibration) If $A \subset X$ is a subpolyhedron and $f$ induces maps on $A$ and $X / A$, then

$$
\bar{L}(f)=\bar{L}\left(f_{A}\right)+\bar{L}\left(f_{X / A}\right)
$$

- (Wedge of circles) If $f$ is a map on a wedge of $k$ circles, then

$$
\bar{L}(f)=-\left(\operatorname{deg}\left(f_{1}\right)+\cdots+\operatorname{deg}\left(f_{k}\right)\right)
$$

## Arkowitz \& Brown (2004)

for continuous maps on compact polyhedra:
Theorem
The "reduced Lefschetz number" is the unique $\mathbb{Z}$-valued function satisfying:

- (Homotopy) If $f \simeq g$, then $\bar{L}(f)=\bar{L}(g)$
- (Cofibration) If $A \subset X$ is a subpolyhedron and $f$ induces maps on $A$ and $X / A$, then

$$
\bar{L}(f)=\bar{L}\left(f_{A}\right)+\bar{L}\left(f_{X / A}\right)
$$

- (Wedge of circles) If $f$ is a map on a wedge of $k$ circles, then

$$
\bar{L}(f)=-\left(\operatorname{deg}\left(f_{1}\right)+\cdots+\operatorname{deg}\left(f_{k}\right)\right)
$$

- (Commutativity) $\bar{L}(f \circ g)=\bar{L}(g \circ f)$


## Furi, Pera, \& Spadini (2004)

for continuous maps on $C^{1}$ manifolds:
Theorem
The fixed point index is the unique $\mathbb{R}$-valued function satisfying:

## Furi, Pera, \& Spadini (2004)

for continuous maps on $C^{1}$ manifolds:
Theorem
The fixed point index is the unique $\mathbb{R}$-valued function satisfying:

- (Homotopy) If $f \simeq g$, then $\operatorname{ind}(f, U)=\operatorname{ind}(g, U)$


## Furi, Pera, \& Spadini (2004)

for continuous maps on $C^{1}$ manifolds:
Theorem
The fixed point index is the unique $\mathbb{R}$-valued function satisfying:

- (Homotopy) If $f \simeq g$, then $\operatorname{ind}(f, U)=\operatorname{ind}(g, U)$
- (Disjoint additivity) If $\operatorname{Fix}(f) \cap U \subset A \sqcup B$, then

$$
\operatorname{ind}(f, U)=\operatorname{ind}(f, A)+\operatorname{ind}(f, B)
$$

## Furi, Pera, \& Spadini (2004)

for continuous maps on $C^{1}$ manifolds:
Theorem
The fixed point index is the unique $\mathbb{R}$-valued function satisfying:

- (Homotopy) If $f \simeq g$, then $\operatorname{ind}(f, U)=\operatorname{ind}(g, U)$
- (Disjoint additivity) If $\operatorname{Fix}(f) \cap U \subset A \sqcup B$, then

$$
\operatorname{ind}(f, U)=\operatorname{ind}(f, A)+\operatorname{ind}(f, B)
$$

- (Constant map) If $c$ is a constant map, then

$$
\operatorname{ind}(c, X)=1
$$

## Each scheme has:

- Homotopy


## Each scheme has:

- Homotopy
- Addition ("cofibration", "additivity")


## Each scheme has:

- Homotopy
- Addition ("cofibration", "additivity")
- A basic computation ("wedge-of-circles", "constant map")

Each scheme has:

- Homotopy
- Addition ("cofibration", "additivity")
- A basic computation ("wedge-of-circles", "constant map")

Some also have the commutativity property.

## Extensions

The A\&B and FPS systems have been recently generalized in various ways:

FP\&S:

A\&B:

## Extensions

The A\&B and FPS systems have been recently generalized in various ways:
FP\&S:

- S. 2007: Coincidence

A\&B:

## Extensions

The A\&B and FPS systems have been recently generalized in various ways:

## FP\&S:

- S. 2007: Coincidence (Taleshian \& Mirghasemi 2009)

A\&B:

## Extensions

The A\&B and FPS systems have been recently generalized in various ways:

## FP\&S:

- S. 2007: Coincidence (Taleshian \& Mirghasemi 2009) (plagiarized)

A\&B:

## Extensions

The A\&B and FPS systems have been recently generalized in various ways:

FP\&S:

- S. 2007: Coincidence (Taleshian \& Mirghasemi 2009) (plagiarized)

A\&B:

- Gonçalves \& Weber, 2008: Equivariant $L(f)$ and $R T(f)$


## Extensions

The A\&B and FPS systems have been recently generalized in various ways:

FP\&S:

- S. 2007: Coincidence (Taleshian \& Mirghasemi 2009) (plagiarized)
- S. 2009: RT for fixed points and coincidences

A\&B:

- Gonçalves \& Weber, 2008: Equivariant $L(f)$ and $R T(f)$


## Extensions

The A\&B and FPS systems have been recently generalized in various ways:

FP\&S:

- S. 2007: Coincidence (Taleshian \& Mirghasemi 2009) (plagiarized)
- S. 2009: RT for fixed points and coincidences
- Gonçalves \& S. 2012: Coincidence on nonorientable, $C^{0}$ manifolds A\&B:
- Gonçalves \& Weber, 2008: Equivariant $L(f)$ and $R T(f)$


## Extensions

The A\&B and FPS systems have been recently generalized in various ways:

FP\&S:

- S. 2007: Coincidence (Taleshian \& Mirghasemi 2009) (plagiarized)
- S. 2009: RT for fixed points and coincidences
- Gonçalves \& S. 2012: Coincidence on nonorientable, $C^{0}$ manifolds

A\&B:

- Gonçalves \& Weber, 2008: Equivariant $L(f)$ and $R T(f)$
$A \& B$ seems hard to extend to coincidence theory,


## Extensions

The A\&B and FPS systems have been recently generalized in various ways:

FP\&S:

- S. 2007: Coincidence (Taleshian \& Mirghasemi 2009) (plagiarized)
- S. 2009: RT for fixed points and coincidences
- Gonçalves \& S. 2012: Coincidence on nonorientable, $C^{0}$ manifolds

A\&B:

- Gonçalves \& Weber, 2008: Equivariant $L(f)$ and $R T(f)$

A\&B seems hard to extend to coincidence theory, FP\&S seems hard to do for nonmanifolds. (without commutativity)

## Hadwiger's Theorem

Our scheme for $L(f)$ is based on Hadwiger's Theorem (1950s), for subcomplexes of an abstract simplicial complex:

Theorem
(Hadwiger) The Euler characteristic is the unique $\mathbb{R}$-valued function on subcomplexes of a simplicial complex satisfying:

## Hadwiger's Theorem

Our scheme for $L(f)$ is based on Hadwiger's Theorem (1950s), for subcomplexes of an abstract simplicial complex:

Theorem
(Hadwiger) The Euler characteristic is the unique $\mathbb{R}$-valued function on subcomplexes of a simplicial complex satisfying:

- (Valuation axiom) $\chi(\emptyset)=0$ and if $A, B$ are subcomplexes of $X$, then

$$
\chi(A \cup B)=\chi(A)+\chi(B)-\chi(A \cap B)
$$

## Hadwiger's Theorem

Our scheme for $L(f)$ is based on Hadwiger's Theorem (1950s), for subcomplexes of an abstract simplicial complex:

Theorem
(Hadwiger) The Euler characteristic is the unique $\mathbb{R}$-valued function on subcomplexes of a simplicial complex satisfying:

- (Valuation axiom) $\chi(\emptyset)=0$ and if $A, B$ are subcomplexes of $X$, then

$$
\chi(A \cup B)=\chi(A)+\chi(B)-\chi(A \cap B)
$$

- (Simplex axiom) If $x$ is a simplex, then $\chi(x)=1$.

Hadwiger's Theorem is an approach to the Euler characteristic "without algebraic topology".

Hadwiger's Theorem is an approach to the Euler characteristic "without algebraic topology".

Comes from a well-developed theory of lattice valuations.

Hadwiger's Theorem is an approach to the Euler characteristic "without algebraic topology".

Comes from a well-developed theory of lattice valuations.

If we consider subcomplexes of a complex, this forms a "distributive lattice"

Hadwiger's Theorem is an approach to the Euler characteristic "without algebraic topology".

Comes from a well-developed theory of lattice valuations.

If we consider subcomplexes of a complex, this forms a "distributive lattice"

Two operations $\cap$ and $\cup$ which are commutative, associative, distributive, with a few more properties.

Hadwiger's result is obvious if you believe the following Lemma:
Lemma
Any valuation on a complex is determined uniquely by its values on simplices, which may be assigned arbitrarily.

Hadwiger's result is obvious if you believe the following Lemma:
Lemma
Any valuation on a complex is determined uniquely by its values on simplices, which may be assigned arbitrarily.

To prove the Lemma:

Hadwiger's result is obvious if you believe the following Lemma:
Lemma
Any valuation on a complex is determined uniquely by its values on simplices, which may be assigned arbitrarily.

To prove the Lemma: just check that, when you assign values to the simplices, the valuation property gives a unique well-defined extension to the whole complex.

Hadwiger's result is obvious if you believe the following Lemma:
Lemma
Any valuation on a complex is determined uniquely by its values on simplices, which may be assigned arbitrarily.

To prove the Lemma: just check that, when you assign values to the simplices, the valuation property gives a unique well-defined extension to the whole complex.

From the lemma, there must be a unique valuation which is 1 on simplices

Hadwiger's result is obvious if you believe the following Lemma:
Lemma
Any valuation on a complex is determined uniquely by its values on simplices, which may be assigned arbitrarily.

To prove the Lemma: just check that, when you assign values to the simplices, the valuation property gives a unique well-defined extension to the whole complex.

From the lemma, there must be a unique valuation which is 1 on simplices, and we know it is the Euler characteristic.

Hadwiger's result is obvious if you believe the following Lemma:
Lemma
Any valuation on a complex is determined uniquely by its values on simplices, which may be assigned arbitrarily.

To prove the Lemma: just check that, when you assign values to the simplices, the valuation property gives a unique well-defined extension to the whole complex.

From the lemma, there must be a unique valuation which is 1 on simplices, and we know it is the Euler characteristic.

We'll use the same lemma for our result.

## $L(f)$ is slightly more complicated than $\chi$ :

## $L(f)$ is slightly more complicated than $\chi$ : we need maps too.

$L(f)$ is slightly more complicated than $\chi$ : we need maps too.
For a complex $X$, let $M(X)$ be the set of pairs $(f, A)$ where $f: X \rightarrow X$ is a simplicial selfmap and $A \subset X$ is a subcomplex.
$L(f)$ is slightly more complicated than $\chi$ : we need maps too.
For a complex $X$, let $M(X)$ be the set of pairs $(f, A)$ where $f: X \rightarrow X$ is a simplicial selfmap and $A \subset X$ is a subcomplex.

## Theorem

There is a unique function $L: M(X) \rightarrow \mathbb{R}$ satisfying:

- (Valuation axiom) $L(f, \emptyset)=0$ and if $A, B$ are subcomplexes of $X$, then

$$
L(f, A \cup B)=L(f, A)+L(f, B)-L(f, A \cap B)
$$

$L(f)$ is slightly more complicated than $\chi$ : we need maps too.
For a complex $X$, let $M(X)$ be the set of pairs $(f, A)$ where $f: X \rightarrow X$ is a simplicial selfmap and $A \subset X$ is a subcomplex.

## Theorem

There is a unique function $L: M(X) \rightarrow \mathbb{R}$ satisfying:

- (Valuation axiom) $L(f, \emptyset)=0$ and if $A, B$ are subcomplexes of $X$, then

$$
L(f, A \cup B)=L(f, A)+L(f, B)-L(f, A \cap B)
$$

- (Simplex axiom) If $x$ is a simplex, then and

$$
L(f, x)=(-1)^{\operatorname{dim} x} c(f, x)+L(f, \partial x) .
$$

$$
L(f, x)=(-1)^{\operatorname{dim} x} c(f, x)+L(f, \partial x)
$$

Here $\partial x$ is the boundary of $x$.

$$
L(f, x)=(-1)^{\operatorname{dim} x} c(f, x)+L(f, \partial x)
$$

Here $\partial x$ is the boundary of $x$.
$c(f, x) \in\{-1,0,1\}$ is the orientation of how $x$ maps onto itself:

$$
L(f, x)=(-1)^{\operatorname{dim} x} c(f, x)+L(f, \partial x)
$$

Here $\partial x$ is the boundary of $x$.
$c(f, x) \in\{-1,0,1\}$ is the orientation of how $x$ maps onto itself:

If $f(x) \neq x$ then $c(f, x)=0$.

$$
L(f, x)=(-1)^{\operatorname{dim} x} c(f, x)+L(f, \partial x)
$$

Here $\partial x$ is the boundary of $x$.
$c(f, x) \in\{-1,0,1\}$ is the orientation of how $x$ maps onto itself:

If $f(x) \neq x$ then $c(f, x)=0$.
If $f(x)=x$ then $c(f, x)= \pm 1$ depending on the orientation.

This $c(f, x)$ should look familiar -

This $c(f, x)$ should look familiar -it's the coefficient on $x$ in $f_{q}(x)$, the chain map.

This $c(f, x)$ should look familiar -it's the coefficient on $x$ in $f_{q}(x)$, the chain map.

Adding these up, it's easy to verify that

$$
L(f, X)=\sum_{q}(-1)^{q} \operatorname{tr}\left(f_{q}: C_{q}(X) \rightarrow C_{q}(X)\right)
$$

This $c(f, x)$ should look familiar -it's the coefficient on $x$ in $f_{q}(x)$, the chain map.

Adding these up, it's easy to verify that

$$
L(f, X)=\sum_{q}(-1)^{q} \operatorname{tr}\left(f_{q}: C_{q}(X) \rightarrow C_{q}(X)\right)
$$

and so

$$
L(f, X)=\sum_{q}(-1)^{q} \operatorname{tr}\left(f_{* q}: H_{q}(X) \rightarrow H_{q}(X)\right)
$$

as expected.

This $c(f, x)$ should look familiar - it's the coefficient on $x$ in $f_{q}(x)$, the chain map.

Adding these up, it's easy to verify that

$$
L(f, X)=\sum_{q}(-1)^{q} \operatorname{tr}\left(f_{q}: C_{q}(X) \rightarrow C_{q}(X)\right)
$$

and so

$$
L(f, X)=\sum_{q}(-1)^{q} \operatorname{tr}\left(f_{* q}: H_{q}(X) \rightarrow H_{q}(X)\right)
$$

as expected.

Note: we obtain this trace formula even without assuming a homotopy invariance axiom.

We want to extend this to continuous maps on polyhedra.

We want to extend this to continuous maps on polyhedra.

The usual approach is to use a simplicial approximation to the map.

We want to extend this to continuous maps on polyhedra.

The usual approach is to use a simplicial approximation to the map.

But our setting above is simplicial maps $X \rightarrow X$, which is too restrictive.

We want to extend this to continuous maps on polyhedra.

The usual approach is to use a simplicial approximation to the map.

But our setting above is simplicial maps $X \rightarrow X$, which is too restrictive.

To use simplicial approximations we need to subdivide the domain.

We want to extend this to continuous maps on polyhedra.

The usual approach is to use a simplicial approximation to the map.

But our setting above is simplicial maps $X \rightarrow X$, which is too restrictive.

To use simplicial approximations we need to subdivide the domain.

So we need a "subdivision" version of the theorem.

Let $M^{\prime}(X)$ be the set of pairs $(f, A)$, where $A$ is a subcomplex of some subdivision $X^{\prime}$ of $X$, and $f: X^{\prime} \rightarrow X$ is simplicial.

Let $M^{\prime}(X)$ be the set of pairs $(f, A)$, where $A$ is a subcomplex of some subdivision $X^{\prime}$ of $X$, and $f: X^{\prime} \rightarrow X$ is simplicial.

## Theorem

There is a unique function $L: M^{\prime}(X) \rightarrow \mathbb{R}$ satisfying:

- (Valuation axiom) $L(f, \emptyset)=0$ and if $A, B$ are subcomplexes of a common subdivision of $X$, then

$$
L(f, A \cup B)=L(f, A)+L(f, B)-L(f, A \cap B)
$$

- (Simplex axiom) If $x$ is a simplex, then

$$
L(f, x)=(-1)^{\operatorname{dim} x} c(f, x)+L(f, \partial x)
$$

This setting now allows for subdivisions, we can do simplicial approximations to continuous maps.

This setting now allows for subdivisions, we can do simplicial approximations to continuous maps.

Our final setting is continuous maps on compact polyhedra:

This setting now allows for subdivisions, we can do simplicial approximations to continuous maps.

Our final setting is continuous maps on compact polyhedra:

Let $X$ be a compact polyhedron, and let $N(X)$ be the set of pairs $(f, A)$ where $f: X \rightarrow X$ is continuous and $A$ is a subpolyhedron of some subdivision of $X$.

This setting now allows for subdivisions, we can do simplicial approximations to continuous maps.

Our final setting is continuous maps on compact polyhedra:

Let $X$ be a compact polyhedron, and let $N(X)$ be the set of pairs $(f, A)$ where $f: X \rightarrow X$ is continuous and $A$ is a subpolyhedron of some subdivision of $X$.

Then our previous arguments suffice in this setting, using a homotopy property to get simplicial approximations.

## Theorem

There is a unique function $\Lambda: N(X) \rightarrow \mathbb{R}$ satisfying:

- (Homotopy axiom) If $f \simeq g$, then $\Lambda(f, A)=\Lambda(g, A)$.


## Theorem

There is a unique function $\Lambda: N(X) \rightarrow \mathbb{R}$ satisfying:

- (Homotopy axiom) If $f \simeq g$, then $\Lambda(f, A)=\Lambda(g, A)$.
- (Valuation axiom) $\Lambda(f, \emptyset)=0$ and if $A, B$ are subpolyhedra of a common subdivision of $X$, then

$$
\Lambda(f, A \cup B)=\Lambda(f, A)+\Lambda(f, B)-\Lambda(f, A \cap B)
$$

## Theorem

There is a unique function $\Lambda: N(X) \rightarrow \mathbb{R}$ satisfying:

- (Homotopy axiom) If $f \simeq g$, then $\Lambda(f, A)=\Lambda(g, A)$.
- (Valuation axiom) $\Lambda(f, \emptyset)=0$ and if $A, B$ are subpolyhedra of a common subdivision of $X$, then

$$
\Lambda(f, A \cup B)=\Lambda(f, A)+\Lambda(f, B)-\Lambda(f, A \cap B)
$$

- (Simplicial map axiom) If $f$ is simplicial and $x$ is a simplex, then

$$
\Lambda(f, x)=(-1)^{\operatorname{dim} x} c(f, x)+\Lambda(f, \partial x) .
$$

Idea:

## Idea:

Replace $f$ by a simplicial approximation using the homotopy axiom

## Idea:

Replace $f$ by a simplicial approximation using the homotopy axiom

Previous theorem gets the uniqueness

## Idea:

Replace $f$ by a simplicial approximation using the homotopy axiom

Previous theorem gets the uniqueness

Need to check that alternative homotopies don't change the value,

Idea:

Replace $f$ by a simplicial approximation using the homotopy axiom

Previous theorem gets the uniqueness

Need to check that alternative homotopies don't change the value, but we already have the trace formula which is homotopy invariant.

## Actually we can do better-

Actually we can do better- use the Hopf construction and you can put all fixed points in the interior of maximal simplicies.

Actually we can do better- use the Hopf construction and you can put all fixed points in the interior of maximal simplicies.

Call such a map a Hopf simplicial map.

Actually we can do better- use the Hopf construction and you can put all fixed points in the interior of maximal simplicies.

Call such a map a Hopf simplicial map.

A Hopf simplicial map has no fixed points on the boundaries

Actually we can do better- use the Hopf construction and you can put all fixed points in the interior of maximal simplicies.

Call such a map a Hopf simplicial map.

A Hopf simplicial map has no fixed points on the boundaries, so in

$$
\Lambda(f, x)=(-1)^{\operatorname{dim} x} c(f, x)+\Lambda(f, \partial x)
$$

we'll always have $\Lambda(f, \partial x)=0$.

So we get a weaker simplicial map axiom:
Theorem
There is a unique function $\Lambda: N(X) \rightarrow \mathbb{R}$ satisfying:

- (Homotopy axiom) If $f \simeq g$, then $\Lambda(f, A)=\Lambda(g, A)$.
- (Valuation axiom) If $A, B$ are subpolyhedra of a common subdivision of $X$, then $\Lambda(f, \emptyset)=0$ and

$$
\Lambda(f, A \cup B)=\Lambda(f, A)+\Lambda(f, B)-\Lambda(f, A \cap B)
$$

- (Hopf simplicial map axiom) Let $f$ be Hopf simplicial. If $x$ is a nonmaximal simplex then $L(f, x)=0$. If $x$ is a maximal simplex, then

$$
\Lambda(f, x)=(-1)^{\operatorname{dim} X} c(f, x)
$$

## Can we weaken the homotopy axiom?

## Can we weaken the homotopy axiom?

We can't just remove it, since $L(f, A)$ would be undefined when $f$ is not simplicial.

## Can we weaken the homotopy axiom?

We can't just remove it, since $L(f, A)$ would be undefined when $f$ is not simplicial.

But the simplicial approximation theorem and Hopf construction require only small homotopies.

## Can we weaken the homotopy axiom?

We can't just remove it, since $L(f, A)$ would be undefined when $f$ is not simplicial.

But the simplicial approximation theorem and Hopf construction require only small homotopies.

Actually the set of Hopf simplicial maps with fixed points in maximal simplices is a dense set in $X^{X}$, the space of selfmaps.

Since the valuation and simplicial map axioms determine $\Lambda$ on a dense set, we need only assume continuity of $\Lambda$ to have uniqueness on all of $X^{X}$.

Since the valuation and simplicial map axioms determine $\Lambda$ on a dense set, we need only assume continuity of $\Lambda$ to have uniqueness on all of $X^{X}$.
"Homotopy invariance" means that $\Lambda$ is constant on path components of $X^{X}$.

Since the valuation and simplicial map axioms determine $\Lambda$ on a dense set, we need only assume continuity of $\Lambda$ to have uniqueness on all of $X^{X}$.
"Homotopy invariance" means that $\Lambda$ is constant on path components of $X^{X}$.

A "continuity axiom" is weaker.

So our final result is:

## Theorem

There is a unique function $\Lambda: N(X) \rightarrow \mathbb{R}$ satisfying:

- (Continuity axiom) The value $\Lambda(f, A)$ depends continuously on $f \in X^{X}$.
- (Valuation axiom) If $A, B$ are subpolyhedra of a common subdivision of $X$, then $\Lambda(f, \emptyset)=0$ and

$$
\Lambda(f, A \cup B)=\Lambda(f, A)+\Lambda(f, B)-\Lambda(f, A \cap B)
$$

- (Hopf simplicial map axiom) Let $f$ be Hopf simplicial. If $x$ is a nonmaximal simplex then $L(f, x)=0$. If $x$ is a maximal simplex, then

$$
\Lambda(f, x)=(-1)^{\operatorname{dim} X} c(f, x)
$$

By the way, a similar weakening may be possible in the FPS approach.

By the way, a similar weakening may be possible in the FPS approach.

## Conjecture

The fixed point index is the unique $\mathbb{R}$-valued function satisfying the following axioms:

- (Continuity) ind $(f, U)$ depends continuously on $f \in X^{X}$
- (Additivity) If $\operatorname{Fix}(f) \cap U \subset U_{1} \sqcup U_{2}$, then

$$
\operatorname{ind}(f, U)=\operatorname{ind}\left(f, U_{1}\right)+\operatorname{ind}\left(f, U_{2}\right)
$$

- (Constant map) If $c$ is a constant map, then

$$
\operatorname{ind}(c, U)=1
$$

By the way, a similar weakening may be possible in the FPS approach.

## Conjecture

The fixed point index is the unique $\mathbb{R}$-valued function satisfying the following axioms:

- (Continuity) ind $(f, U)$ depends continuously on $f \in X^{X}$
- (Additivity) If $\operatorname{Fix}(f) \cap U \subset U_{1} \sqcup U_{2}$, then

$$
\operatorname{ind}(f, U)=\operatorname{ind}\left(f, U_{1}\right)+\operatorname{ind}\left(f, U_{2}\right)
$$

- (Constant map) If $c$ is a constant map, then

$$
\operatorname{ind}(c, U)=1
$$

Not sure if this will work for the A\&B approach.

## Thanks!

