Elegant ideas, and why you should love them

P. Christopher Staecker

Fairfield University

Karim Faroud memorial lecture, 2011

Introduction

Mathematical beauty is not just for mathematicians

Introduction

Mathematical beauty is not just for mathematicians, and not very different from other types of beauty.

Introduction

Mathematical beauty is not just for mathematicians, and not very different from other types of beauty.

You don't need a beautiful mind.

Introduction

Mathematical beauty is not just for mathematicians, and not very different from other types of beauty.

You don't need a beautiful mind.

You probably already have a beautiful mind.

Introduction

Mathematical beauty is not just for mathematicians, and not very different from other types of beauty.

You don't need a beautiful mind.

You probably already have a beautiful mind.

We'll talk about:

- Some elegant ideas ("Green noses")
- Similar types of beauty in other arts

An elegant sandwich

My lunch box.

It should fit, but it's the wrong shape.

How to make it fit?

How to make it fit?
Here's one method:

How to make it fit?
Here's one method:

Not elegant.

A better solution:

A better solution:

A better solution:

A better solution:

Better.

An elegant solution:

An elegant solution:

An elegant solution:

An elegant solution:

(hold your applause)

An elegant solution:

(hold your applause)
"Elegance" is simple, effortless beauty.

If you can be even slightly impressed by this example, mathematical beauty is for you.

Green noses

"Up" Series (1964-2005 - ?) by Michael Apted.

Green noses

"Up" Series (1964-2005 - ?) by Michael Apted.
"Give me the child when he is seven, and I will give you the man." Ignatius of Loyola

Green noses

"Up" Series (1964-2005 - ?) by Michael Apted.
"Give me the child when he is seven, and I will give you the man." Ignatius of Loyola

"Still looking for the green noses."

"Still looking for the green noses."

Most people disappointed by mathematics.
"Still looking for the green noses."

Most people disappointed by mathematics.

But there are lots of green noses.
"Still looking for the green noses."

Most people disappointed by mathematics.

But there are lots of green noses.

Here's three examples:

Green nose \#1: An elegant shape

Here's a picture you may have seen before:

Green nose \#1: An elegant shape

Here's a picture you may have seen before:

Green nose \#1: An elegant shape

Here's a picture you may have seen before:

The Mandlebrot set. (It's a fractal.)

Green nose \#1: An elegant shape

Here's a picture you may have seen before:

The Mandlebrot set. (It's a fractal.)
"The most complicated object in mathematics" Scientific American, 1986

So what?

So what? I can do that.

So what? I can do that.

So what? I can do that.

The Staeckerbrot!

So what? I can do that.

The Staeckerbrot! Not really a "mathematical" shape.

The Mandlebrot set can be described by an equation.

The Mandlebrot set can be described by an equation.

And the equation is very very simple:

The Mandlebrot set can be described by an equation.

And the equation is very very simple:

$$
f(z)=z^{2}+c
$$

$$
f(z)=z^{2}+c
$$

$$
f(z)=z^{2}+c
$$

Boneheadedly simple, but shockingly complex.

Why does such complexity exist in mathematics?

Why does such complexity exist in mathematics?

Math was created to solve complex problems, so we get complex answers.

Why does such complexity exist in mathematics?

Math was created to solve complex problems, so we get complex answers.

But what about things that weren't meant to be complex?

Why does such complexity exist in mathematics?

Math was created to solve complex problems, so we get complex answers.

But what about things that weren't meant to be complex?
$f(z)=z^{2}+c$ isn't really supposed to be that complicated.

Why does such complexity exist in mathematics?

Math was created to solve complex problems, so we get complex answers.

But what about things that weren't meant to be complex?
$f(z)=z^{2}+c$ isn't really supposed to be that complicated.

If we created mathematics, then why does it surprise us?

Why does such complexity exist in mathematics?

Math was created to solve complex problems, so we get complex answers.

But what about things that weren't meant to be complex?
$f(z)=z^{2}+c$ isn't really supposed to be that complicated.

If we created mathematics, then why does it surprise us?

These surprises are beautiful.

Green nose \#2: An elegant way of thinking

Let's try a little arithmetic:

$$
\begin{aligned}
& 344 \\
& 217
\end{aligned}
$$

Green nose \#2: An elegant way of thinking

Let's try a little arithmetic:

Green nose \#2: An elegant way of thinking

Let's try a little arithmetic:

1
344
$+\quad 217$
61

Green nose \#2: An elegant way of thinking

Let's try a little arithmetic:

1
344
$+\quad 217$
561

Green nose \#2: An elegant way of thinking

Let's try a little arithmetic:

$$
\begin{array}{r}
1 \\
344 \\
+\quad 217 \\
\hline 561
\end{array}
$$

You could probably even do this in your head, the same way.

Green nose \#2: An elegant way of thinking

Let's try a little arithmetic:

$$
\begin{array}{r}
1 \\
344 \\
+\quad 217 \\
\hline 561
\end{array}
$$

You could probably even do this in your head, the same way.

Awesome, right?

Imagine you're a Roman centurion, and you want to add these numbers:

Imagine you're a Roman centurion, and you want to add these numbers:

CCCXXXIV + CCXVII $=$?

Imagine you're a Roman centurion, and you want to add these numbers:

CCCXXXIV + CCXVII $=$?

Try:
CCCXXXIV
$+\quad$ CCXVII

How about this: $2355 \div 3$

How about this: $2355 \div 3$

Here goes:
$3 \longdiv { 2 3 5 5 }$

How about this: $2355 \div 3$

Here goes:
$3 \longdiv { 2 3 5 5 }$

How about this:

$$
2355 \div 3
$$

Here goes:

$$
3 \begin{gathered}
\frac{7}{2355} \\
\underline{21}
\end{gathered}
$$

How about this:

$$
2355 \div 3
$$

Here goes:

$$
3 \begin{gathered}
\frac{7}{2355} \\
\frac{21}{2}
\end{gathered}
$$

How about this:

$$
2355 \div 3
$$

Here goes:

$$
\begin{gathered}
3 \longdiv { 2 3 5 5 } \\
\frac{7}{\frac{21}{25}}
\end{gathered}
$$

How about this:

$$
2355 \div 3
$$

Here goes:

$$
3 \begin{gathered}
\frac{78}{2355} \\
\frac{21}{25}
\end{gathered}
$$

How about this:

$$
2355 \div 3
$$

Here goes:

3 | 78 |
| :---: |
| $\frac{21}{25}$ |
| $\underline{25}$ |
| 24 |

How about this:

$$
2355 \div 3
$$

Here goes:

3 | 78 |
| :---: |
| $\frac{21}{2555}$ |
| $\frac{24}{1}$ |

How about this:

$$
2355 \div 3
$$

Here goes:

3 | 78 |
| ---: |
| $\frac{2355}{25}$ |
| $\frac{24}{15}$ |

How about this:

$$
2355 \div 3
$$

Here goes:

3 | 785 |
| ---: |
| $\frac{2355}{25}$ |
| $\frac{24}{15}$ |

How about this:

$$
2355 \div 3
$$

Here goes:

3 | $\frac{785}{2355}$ |
| ---: |
| $\underline{21}$ |
| 25 |
| $\frac{24}{15}$ |
| 15 |

How about this:

$$
2355 \div 3
$$

Here goes:

3 | 785 |
| ---: |
| 2355 |
| 25 |
| $\frac{24}{15}$ |
| $\frac{15}{0}$ |

Ask the centurion:

III) $\overline{M M C C C L V}$

Ask the centurion:

III) $\overline{\text { MMCCCLV }}$

The centurion probably will be unable to do this without mechanical help.

Ask the centurion:

III) MMCCCLV

The centurion probably will be unable to do this without mechanical help.

Your advantage is having an elegant way of thinking.

Roman numerals are the problem and Hindu-Arabic numerals are the solution.

Roman numerals are the problem and Hindu-Arabic numerals are the solution.

They don't just make things easier, they actually change the way you think about numbers.

Roman numerals are the problem and Hindu-Arabic numerals are the solution.

They don't just make things easier, they actually change the way you think about numbers.

Roman numerals are a bit like counting change: everything in groups of 1, 5,10 , etc.

Roman numerals are the problem and Hindu-Arabic numerals are the solution.

They don't just make things easier, they actually change the way you think about numbers.

Roman numerals are a bit like counting change: everything in groups of 1 , 5,10 , etc.

What's 3 quarters, 4 dimes, 1 nickel and 2 pennies plus 2 quarters, 3 dimes, and 4 pennies?

Hindu-Arabic numbers are more like ...

Hindu-Arabic numbers are more like ... numbers.

Hindu-Arabic numbers are more like ... numbers.

It's hard to describe simply because our use of the notation forms the way we think about them.

Hindu-Arabic numbers are more like ... numbers.

It's hard to describe simply because our use of the notation forms the way we think about them.

Elegant ideas transform the way we see the world, and transform the way we think.

Hindu-Arabic numbers are more like ... numbers.

It's hard to describe simply because our use of the notation forms the way we think about them.

Elegant ideas transform the way we see the world, and transform the way we think.

The most powerful ways of thinking completely dominate our thoughts, and we don't even recognize it.

Hindu-Arabic numbers are more like ... numbers.

It's hard to describe simply because our use of the notation forms the way we think about them.

Elegant ideas transform the way we see the world, and transform the way we think.

The most powerful ways of thinking completely dominate our thoughts, and we don't even recognize it.
'The best design is an invisible one'

The method for addition:

The method for addition:

Not clear who originally invented it, but it's credited to Al-Kwarizmi who is best known for:

The method for addition:

Not clear who originally invented it, but it's credited to Al-Kwarizmi who is best known for:

Al-Kitab al-mukhtasar fi hisab al-jabr wa'l-muqabala (820 AD). "The Compendious Book on Calculation by Completion and Balancing"

The method for addition:

Not clear who originally invented it, but it's credited to Al-Kwarizmi who is best known for:

Al-Kitab al-mukhtasar fi hisab al-jabr wa'l-muqabala (820 AD). "The Compendious Book on Calculation by Completion and Balancing"

Book includes the quadratic formula, and lots of applications to geometry and Islamic inheritance.

Al-Kwarizmi also wrote
Kitab al-Jam' wa-l-tafriq bi-hisab al-Hind
"The Book of Addition and Subtraction According to the Hindu Calculation"

Al-Kwarizmi also wrote
Kitab al-Jam' wa-l-tafriq bi-hisab al-Hind
"The Book of Addition and Subtraction According to the Hindu Calculation"

This describes the method for arithmetic with Hindu-Arabic numerals.

Al-Kwarizmi also wrote
Kitab al-Jam' wa-I-tafriq bi-hisab al-Hind
"The Book of Addition and Subtraction According to the Hindu Calculation"

This describes the method for arithmetic with Hindu-Arabic numerals.

This (and Al-Jabr) was translated into Latin (12th century), and the method was referred to as "Al-Kwarizmi's method"

Al-Kwarizmi also wrote
Kitab al-Jam' wa-I-tafriq bi-hisab al-Hind
"The Book of Addition and Subtraction According to the Hindu Calculation"

This describes the method for arithmetic with Hindu-Arabic numerals.

This (and Al-Jabr) was translated into Latin (12th century), and the method was referred to as "Al-Kwarizmi's method" or "Algorism's method"

Al-Kwarizmi also wrote
Kitab al-Jam' wa-I-tafriq bi-hisab al-Hind
"The Book of Addition and Subtraction According to the Hindu Calculation"

This describes the method for arithmetic with Hindu-Arabic numerals.

This (and Al-Jabr) was translated into Latin (12th century), and the method was referred to as "Al-Kwarizmi's method" or "Algorism's method" or eventually just "The Algorism"

Al-Kwarizmi also wrote
Kitab al-Jam' wa-I-tafriq bi-hisab al-Hind
"The Book of Addition and Subtraction According to the Hindu Calculation"

This describes the method for arithmetic with Hindu-Arabic numerals.

This (and Al-Jabr) was translated into Latin (12th century), and the method was referred to as "Al-Kwarizmi's method" or "Algorism's method" or eventually just "The Algorism" or "The Algorithm".

It took a long time for the arabic numerals to become popular in Europe.

Gregor Reisch, Typus Arithmeticae, 1525

Fibbonacci (13th century) helped spread them to Europe.

Fibbonacci (13th century) helped spread them to Europe.

Elegant ways of thinking are not always recognized, even by very smart people.

Green nose \#3: An elegant formula

A common candidate for "most beautiful formula in mathematics" is Euler's identity (1748) involving π, e, and i.

Green nose \#3: An elegant formula

A common candidate for "most beautiful formula in mathematics" is Euler's identity (1748) involving π, e, and i.

The number π comes from ancient geometry (Egypt/Babylon 1900BC, Archimedes 250BC), the ratio of a circle's circumpherence and diameter:

$$
\pi=3.1415 \ldots
$$

Green nose \#3: An elegant formula

A common candidate for "most beautiful formula in mathematics" is Euler's identity (1748) involving π, e, and i.

The number π comes from ancient geometry (Egypt/Babylon 1900BC, Archimedes 250BC), the ratio of a circle's circumpherence and diameter:

$$
\pi=3.1415 \ldots
$$

The number e comes from calculus (Bernoulli, etc. 1600s AD):

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots=2.7182 \ldots
$$

Green nose \#3: An elegant formula

A common candidate for "most beautiful formula in mathematics" is Euler's identity (1748) involving π, e, and i.

The number π comes from ancient geometry (Egypt/Babylon 1900BC, Archimedes 250BC), the ratio of a circle's circumpherence and diameter:

$$
\pi=3.1415 \ldots
$$

The number e comes from calculus (Bernoulli, etc. 1600s AD):

$$
e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots=2.7182 \ldots
$$

Bernoulli was working on compound interest.

The number i is the "imaginary number"

$$
i=\sqrt{-1}
$$

which comes from algebra (Italians, 1500s AD), useful to solve polynomial equations.

The number i is the "imaginary number"

$$
i=\sqrt{-1}
$$

which comes from algebra (Italians, 1500s AD), useful to solve polynomial equations.

Cardano: this method is "truly sophisticated."

The number i is the "imaginary number"

$$
i=\sqrt{-1}
$$

which comes from algebra (Italians, 1500s AD), useful to solve polynomial equations.

Cardano: this method is "truly sophisticated."

So we have π from geometry, e from analysis, and i from algebra.

The number i is the "imaginary number"

$$
i=\sqrt{-1}
$$

which comes from algebra (Italians, 1500s AD), useful to solve polynomial equations.

Cardano: this method is "truly sophisticated."

So we have π from geometry, e from analysis, and i from algebra.

Each concept was developed by different people to solve completely different problems. There should be no relationship between them.

Euler's identity is:

Euler's identity is:

$$
e^{i \pi}=-1
$$

Euler's identity is:

$$
e^{i \pi}=-1
$$

or even more provocative:

$$
e^{i \pi}+1=0
$$

Euler's identity is:

$$
e^{i \pi}=-1
$$

or even more provocative:

$$
e^{i \pi}+1=0
$$

It is shocking that there is such a relationship.

Euler's identity is:

$$
e^{i \pi}=-1
$$

or even more provocative:

$$
e^{i \pi}+1=0
$$

It is shocking that there is such a relationship.

It is beautiful.

From whence the green noses?

Why should the green noses exist?

From whence the green noses?

Why should the green noses exist?

Mathematics is a human tool to solve human problems, right?

From whence the green noses?

Why should the green noses exist?

Mathematics is a human tool to solve human problems, right?

We didn't invent mathematics so that these things would be true, so why are they true?

From whence the green noses?

Why should the green noses exist?

Mathematics is a human tool to solve human problems, right?

We didn't invent mathematics so that these things would be true, so why are they true?

Reminds me of Scooby Doo.

From whence the green noses?

Why should the green noses exist?

Mathematics is a human tool to solve human problems, right?

We didn't invent mathematics so that these things would be true, so why are they true?

Reminds me of Scooby Doo.

Maybe there is something else at work here...

Maybe mathematics is just part of the universe.

Maybe mathematics is just part of the universe.

A deep part.

Maybe mathematics is just part of the universe.

A deep part.

More fundamental than the laws of physics.

Maybe mathematics is just part of the universe.

A deep part.

More fundamental than the laws of physics.

But why should it be beautiful?

Maybe God made it that way.

Maybe God made it that way.
This could explain why it's beautiful:

Maybe God made it that way.
This could explain why it's beautiful:
God values beauty, and so God made the creation beautiful at the most fundamental level possible.

Maybe God made it that way.
This could explain why it's beautiful:

God values beauty, and so God made the creation beautiful at the most fundamental level possible. This can be inspiring, and worthy of our attention.

Maybe God made it that way.
This could explain why it's beautiful:

God values beauty, and so God made the creation beautiful at the most fundamental level possible. This can be inspiring, and worthy of our attention. Discovering this creation and sharing it with others can be an act of worship.

Maybe God made it that way.

This could explain why it's beautiful:

God values beauty, and so God made the creation beautiful at the most fundamental level possible. This can be inspiring, and worthy of our attention. Discovering this creation and sharing it with others can be an act of worship.

But "because God did it" or "because God said so" shouldn't be satisfying answers.

Maybe God made it that way.

This could explain why it's beautiful:

God values beauty, and so God made the creation beautiful at the most fundamental level possible. This can be inspiring, and worthy of our attention. Discovering this creation and sharing it with others can be an act of worship.

But "because God did it" or "because God said so" shouldn't be satisfying answers.

In other contexts, these answers are dangerous.

Maybe God made it that way.

This could explain why it's beautiful:

God values beauty, and so God made the creation beautiful at the most fundamental level possible. This can be inspiring, and worthy of our attention. Discovering this creation and sharing it with others can be an act of worship.

But "because God did it" or "because God said so" shouldn't be satisfying answers.

In other contexts, these answers are dangerous.

With or without God in the picture, the existence of mathematical beauty is a fundamental mystery that should inspire us and humble us.

Mathematical beauty and other types of beauty

The characteristics of mathematical beauty appear in other arts.

Mathematical beauty and other types of beauty

The characteristics of mathematical beauty appear in other arts.

First: what exactly is mathematics about?

What is it?

Mathematics is not really about numbers.

What is it?

Mathematics is not really about numbers.

Certainly numbers are mathematical, but they are only a part of mathematics in general.

What is it?

Mathematics is not really about numbers.

Certainly numbers are mathematical, but they are only a part of mathematics in general.

Mathematics generally is about patterns and structured reasoning.

What is it?

Mathematics is not really about numbers.

Certainly numbers are mathematical, but they are only a part of mathematics in general.

Mathematics generally is about patterns and structured reasoning.

About learning how to think appropriately.

What is it?

Mathematics is not really about numbers.

Certainly numbers are mathematical, but they are only a part of mathematics in general.

Mathematics generally is about patterns and structured reasoning.

About learning how to think appropriately.

Certainly numbers display patterns and require structured reasoning, but this is only one setting.

Deeper magic

Mathematics is a deeper magic.

Deeper magic

Mathematics is a deeper magic.

The Lion, The Witch, and the Wardrobe, C.S. Lewis

Beauty

The basic themes of structure and patterns are universal.

Beauty

The basic themes of structure and patterns are universal.

Let's look at some other beautiful arts which are beautiful in similar ways to mathematics.

Structured beauty

Mathematical research is creative, but strongly structured.

Structured beauty

Mathematical research is creative, but strongly structured.

All mathematics must lie within the rules of logical reasoning.

Structured beauty

Mathematical research is creative, but strongly structured.

All mathematics must lie within the rules of logical reasoning.
"Physics is imagination in a straightjacket" - Moffat (1939-)

Is true artistry possible within strict structures?

Is true artistry possible within strict structures?

Poetry

Is true artistry possible within strict structures?

Poetry

Would Shakespeare's works have been better if he hadn't written in meter?

Is true artistry possible within strict structures?

Poetry

Would Shakespeare's works have been better if he hadn't written in meter?

In the hands of the artist, the structure becomes a strength rather than a weakness.

Often, restrictions often make the art better.

Often, restrictions often make the art better.

Star Wars episode IV (1977) vs.

Often, restrictions often make the art better.

Star Wars episode IV (1977) vs. Star Wars episode I (1999)

Often, restrictions often make the art better.

Star Wars episode IV (1977) vs. Star Wars episode I (1999)

Films of Lars von Trier,

Often, restrictions often make the art better.

Star Wars episode IV (1977) vs. Star Wars episode I (1999)

Films of Lars von Trier, The Five Obstructions

Often, restrictions often make the art better.

Star Wars episode IV (1977) vs. Star Wars episode I (1999)

Films of Lars von Trier, The Five Obstructions

Cinema Verité, etc.

To a lesser extent, any visual art which incorporates its surroundings is like this.

To a lesser extent, any visual art which incorporates its surroundings is like this.

Cave art flows with the contours of the walls.

To a lesser extent, any visual art which incorporates its surroundings is like this.

Cave art flows with the contours of the walls.

Architecture and graffiti art use the existing landscape.

Deterministic beauty

Art in the landscape:

Getty Center Museum, Los Angeles. (photo: http://academic.reed.edu/getty/)

Deterministic beauty

Art in the landscape:

Getty Center Museum, Los Angeles. (photo: http://academic.reed.edu/getty/)

Deterministic beauty

Art in the landscape:

Israeli West Bank barrier. (photo: Wikipedia)

Mathematics research is about building onto and into a vast pre-existing landscape of knowledge.

Mathematics research is about building onto and into a vast pre-existing landscape of knowledge.

Like mural-making.

Mathematics research is about building onto and into a vast pre-existing landscape of knowledge.

Like mural-making.

The most beautiful facts will touch the surrounding landscape in new and unexpected ways. (Euler's identity)

Deterministic beauty

Mathematics isn't just structured, it's deterministic.

Deterministic beauty

Mathematics isn't just structured, it's deterministic.

New concepts are created, but can only be created in a specific way.

Deterministic beauty

Mathematics isn't just structured, it's deterministic.

New concepts are created, but can only be created in a specific way.

Like negative numbers.

Deterministic beauty

Mathematics isn't just structured, it's deterministic.

New concepts are created, but can only be created in a specific way.

Like negative numbers.

We begin with the rules of logic, and play them out.

Deterministic beauty

Mathematics isn't just structured, it's deterministic.

New concepts are created, but can only be created in a specific way.

Like negative numbers.

We begin with the rules of logic, and play them out. We do not personally "intervene" to decide what the truth is- the truth reveals itself to the us as we work.

Deterministic beauty

Mathematics isn't just structured, it's deterministic.

New concepts are created, but can only be created in a specific way.

Like negative numbers.

We begin with the rules of logic, and play them out. We do not personally "intervene" to decide what the truth is- the truth reveals itself to the us as we work.

Like Michelangelo: the sculpture already exists inside the block, we just need to "free the idea" by chipping away.

Can something fundamentally deterministic be truly beautiful?

Can something fundamentally deterministic be truly beautiful?

Determinism is sometimes used in music:

Can something fundamentally deterministic be truly beautiful?

Determinism is sometimes used in music:

Ligeti, Pome Symphonique for 100 metronomes, 1962.

Can something fundamentally deterministic be truly beautiful?

Determinism is sometimes used in music:

Ligeti, Pome Symphonique for 100 metronomes, 1962. (Not conventionally beautiful to listen to.)

Can something fundamentally deterministic be truly beautiful?

Determinism is sometimes used in music:

Ligeti, Pome Symphonique for 100 metronomes, 1962. (Not conventionally beautiful to listen to.)

Steve Reich, It's Gonna Rain (1965), Come Out (1966)

Pärt, Cantus in Memoriam Benjamin Britten, 1977.

Pärt, Cantus in Memoriam Benjamin Britten, 1977.

First violin part:

Pärt, Cantus in Memoriam Benjamin Britten, 1977.

First violin part:

Pärt, Cantus in Memoriam Benjamin Britten, 1977.

First violin part:

a few pages later...

Pärt, Cantus in Memoriam Benjamin Britten, 1977. Second violin part:

Pärt, Cantus in Memoriam Benjamin Britten, 1977. Second violin part:

Same pattern, half speed

Pärt, Cantus in Memoriam Benjamin Britten, 1977. Viola part:

Same pattern, one-fourth speed

The cello plays the same pattern at one-eighth speed,

The cello plays the same pattern at one-eighth speed, the bass at one-sixteenth speed.

The cello plays the same pattern at one-eighth speed, the bass at one-sixteenth speed.

But it sounds beautiful, and not at all artificial.

The cello plays the same pattern at one-eighth speed, the bass at one-sixteenth speed.

But it sounds beautiful, and not at all artificial.

It is very creative.

Big philosophical question:

Big philosophical question: are mathematicians discovering their truths

Big philosophical question: are mathematicians discovering their truths or creating them?

Big philosophical question: are mathematicians discovering their truths or creating them?

Certainly Britten created his music.

Big philosophical question: are mathematicians discovering their truths or creating them?

Certainly Britten created his music. He chose the rules so that it would sound good.

Big philosophical question: are mathematicians discovering their truths or creating them?

Certainly Britten created his music. He chose the rules so that it would sound good.

Mathematicians don't even get to choose their own rules.

Big philosophical question: are mathematicians discovering their truths or creating them?

Certainly Britten created his music. He chose the rules so that it would sound good.

Mathematicians don't even get to choose their own rules.

It is still profoundly creative.

Big philosophical question: are mathematicians discovering their truths or creating them?

Certainly Britten created his music. He chose the rules so that it would sound good.

Mathematicians don't even get to choose their own rules.

It is still profoundly creative.

This is a beautiful mystery.

That's all!
http://faculty.fairfield.edu/cstaecker

