Voting: How it works, and why it doesn't

Chris Staecker

Fairfield University

Fairfield U. Mathematics \& Computer Science Colloquium Election Day 2012

This talk is about fairness in voting systems.

This talk is about fairness in voting systems.

I'll discuss specifically the unfairness in our system of voting.

I don't mean...

I don't mean...

I will not talk about actual cheating

I don't mean...

I will not talk about actual cheating

These are real issues, but I want to talk about fairness of the counting system

I don't mean...

I will not talk about actual cheating

These are real issues, but I want to talk about fairness of the counting system assuming that everybody is following the rules.

I don't mean...

I will not talk about actual cheating

These are real issues, but I want to talk about fairness of the counting system assuming that everybody is following the rules.

I also will not discuss the electoral college.

I don't mean...

I will not talk about actual cheating

These are real issues, but I want to talk about fairness of the counting system assuming that everybody is following the rules.

I also will not discuss the electoral college.

This is a crazy overlay onto our basic voting system which makes everything slightly weirder.

I'm interested in the system at a much more fundamental level.

I'm interested in the system at a much more fundamental level.

Just the basic idea of counting up votes and deciding the winner.

I'm interested in the system at a much more fundamental level.

Just the basic idea of counting up votes and deciding the winner.

This turns out to be much more complicated than you might expect.

I'm interested in the system at a much more fundamental level.

Just the basic idea of counting up votes and deciding the winner.

This turns out to be much more complicated than you might expect.

Actually, voting is an insane idea when you think about it.

Imagine a bunch of people disagree about something.

Imagine a bunch of people disagree about something. How will we decide?

Imagine a bunch of people disagree about something. How will we decide?

Let's just ask everybody what their opinion is,

Imagine a bunch of people disagree about something. How will we decide?

Let's just ask everybody what their opinion is, then combine all these answers into a single "will of the people".

Imagine a bunch of people disagree about something. How will we decide?

Let's just ask everybody what their opinion is, then combine all these answers into a single "will of the people".

This sounds sketchy.

Something that complicates everything:
Preferences of groups of people do not behave like preferences of individual people.

Something that complicates everything:
Preferences of groups of people do not behave like preferences of individual people.

This is the Condorcet paradox.
(Condorcet, 1743-1794)

Condorcet paradox

Preferences of groups of people do not behave like preferences of individual people.

Condorcet paradox

Preferences of groups of people do not behave like preferences of individual people.

Imagine an election with three candidates A, B, C.

Condorcet paradox

Preferences of groups of people do not behave like preferences of individual people.

Imagine an election with three candidates A, B, C.

No person would ever say: "I like A more than B, and B more than C, and C more than $A^{\prime \prime}$.

Condorcet paradox

Preferences of groups of people do not behave like preferences of individual people.

Imagine an election with three candidates A, B, C.

No person would ever say: "I like A more than B, and B more than C, and C more than $A^{\prime \prime}$.

Individual preferences are transitive.

But let's ask a group of people to rank their choices, and imagine they say:

15	11	13
A	B	C
B	C	A
C	A	B

But let's ask a group of people to rank their choices, and imagine they say:

15	11	13
A	B	C
B	C	A
C	A	B

Here, 72\% prefer A over B.

But let's ask a group of people to rank their choices, and imagine they say:

15	11	13
A	B	C
B	C	A
C	A	B

Here, 72\% prefer A over B. 67% prefer B over C.

But let's ask a group of people to rank their choices, and imagine they say:

15	11	13
A	B	C
B	C	A
C	A	B

Here, 72\% prefer A over B. 67\% prefer B over C. 62\% prefer C over A.

But let's ask a group of people to rank their choices, and imagine they say:

15	11	13
A	B	C
B	C	A
C	A	B

Here, 72\% prefer A over B.
67\% prefer B over C.
62\% prefer C over A.

So what is the "will of the people"?

But let's ask a group of people to rank their choices, and imagine they say:

15	11	13
A	B	C
B	C	A
C	A	B

Here, 72\% prefer A over B.
67% prefer B over C.
62% prefer C over A.

So what is the "will of the people"?

Sounds like there is no coherent will of the people.

Major goal for the talk:

Major goal for the talk:

Various different ways to look at preferences and decide the winner.

Major goal for the talk:

Various different ways to look at preferences and decide the winner. Which is the best?

Major goal for the talk:

Various different ways to look at preferences and decide the winner. Which is the best?

Basically, a winner-selection method should analyse the preferences, and choose a winner based on some relevant details of the set of preferences.

Major goal for the talk:

Various different ways to look at preferences and decide the winner. Which is the best?

Basically, a winner-selection method should analyse the preferences, and choose a winner based on some relevant details of the set of preferences.

For a reasonably fair system:

- If the society actually has a uniform preference, the decision should reflect this.

Major goal for the talk:

Various different ways to look at preferences and decide the winner. Which is the best?

Basically, a winner-selection method should analyse the preferences, and choose a winner based on some relevant details of the set of preferences.

For a reasonably fair system:

- If the society actually has a uniform preference, the decision should reflect this.
- The decision should not depend on irrelevant details of the preferences.

Let's vote!

Let's vote!

Voting for US president is boring.

Let's vote!

Voting for US president is boring. We will vote for:

Let's vote!

Voting for US president is boring. We will vote for:
The second-best bounty hunter from The Empire Strikes Back

Let's vote!

Voting for US president is boring. We will vote for:
The second-best bounty hunter from The Empire Strikes Back

Obviously Boba Fett is the best.

Let's vote!

Voting for US president is boring. We will vote for:
The second-best bounty hunter from The Empire Strikes Back

Obviously Boba Fett is the best. We'll vote for second best.

Here are the choices:

Here are the choices:

Bossk

Here are the choices:

Bossk

Zuckuss

Here are the choices:

Bossk

Zuckuss

4-LOM

Here are the choices:

Bossk

Zuckuss

4-LOM

Dengar

Here are the choices:

Bossk

Zuckuss

4-LOM

Dengar

To make it interesting, let's rank our choices.

To make it interesting, let's rank our choices.

Choose your \#1, \#2, etc. choice.

To make it interesting, let's rank our choices.

Choose your \#1, \#2, etc. choice.

After we vote, we'll count up the votes and have our decision.

Your ballot will look like this:

Vote on the tablets going around, or:

Connect to the "staecker" wi-fi network, and visit: http://staecker.local/vote

Once we have all the votes, we'll tally them in the obvious way.

Once we have all the votes, we'll tally them in the obvious way.

Actually there is no obvious way.

Once we have all the votes, we'll tally them in the obvious way.

Actually there is no obvious way.

There are lots and lots of winner selection methods that we could use.

Once we have all the votes, we'll tally them in the obvious way.

Actually there is no obvious way.

There are lots and lots of winner selection methods that we could use.

Even reasonable alternative systems will produce wildly different outcomes.

Stalin (1920s): "I consider it completely unimportant who in the party will vote, or how; but what is extraordinarily important is this who will count the votes, and how."

Stalin (1920s): "I consider it completely unimportant who in the party will vote, or how; but what is extraordinarily important is this who will count the votes, and how."

Here comes 8 different winner selection methods for ranked ballots.

Plurality

This is basically what we use in USA.

Plurality

This is basically what we use in USA.

Whoever gets the most first place votes is the winner.

Plurality

This is basically what we use in USA.

Whoever gets the most first place votes is the winner.

All rankings except first place are ignored.

Anti-plurality

A silly variation on plurality:

Anti-plurality

A silly variation on plurality: whoever gets the fewest last-place votes is the winner.

Anti-plurality

A silly variation on plurality: whoever gets the fewest last-place votes is the winner.

This will elect the least-bad candidate, rather than the most-good.

Anti-plurality

A silly variation on plurality:
whoever gets the fewest last-place votes is the winner.

This will elect the least-bad candidate, rather than the most-good.

Use this in a "lesser of evils" election.

Borda count

Everybody gets points:

Borda count

Everybody gets points:

for n candidates:

Borda count

Everybody gets points:
for n candidates:

- a first place vote is worth n points

Borda count

Everybody gets points:
for n candidates:

- a first place vote is worth n points
- a second place vote is worth $n-1$ points

Borda count

Everybody gets points:
for n candidates:

- a first place vote is worth n points
- a second place vote is worth $n-1$ points
- a last place vote is worth 1 point

Borda count

So if the candidates are A, B, C and the votes are like this:

1	3	2	4
A	B	C	A
B	C	A	C
C	A	B	B

Borda count

So if the candidates are A, B, C and the votes are like this:

1	3	2	4
A	B	C	A
B	C	A	C
C	A	B	B

A gets: $1 \times 3+3 \times 1+2 \times 2+4 \times 3=22$ points

Borda count

So if the candidates are A, B, C and the votes are like this:

1	3	2	4
A	B	C	A
B	C	A	C
C	A	B	B

A gets: $1 \times 3+3 \times 1+2 \times 2+4 \times 3=22$ points B gets: $1 \times 2+3 \times 3+2 \times 1+4 \times 1=17$ points

Borda count

So if the candidates are A, B, C and the votes are like this:

1	3	2	4
A	B	C	A
B	C	A	C
C	A	B	B

A gets: $1 \times 3+3 \times 1+2 \times 2+4 \times 3=22$ points B gets: $1 \times 2+3 \times 3+2 \times 1+4 \times 1=17$ points
C gets: $1 \times 3+3 \times 2+2 \times 3+4 \times 2=27$ points

Borda count

So if the candidates are A, B, C and the votes are like this:

1	3	2	4
A	B	C	A
B	C	A	C
C	A	B	B

A gets: $1 \times 3+3 \times 1+2 \times 2+4 \times 3=22$ points
B gets: $1 \times 2+3 \times 3+2 \times 1+4 \times 1=17$ points
C gets: $1 \times 3+3 \times 2+2 \times 3+4 \times 2=27$ points
C wins.

Instant runoff

Do several rounds.

Instant runoff

Do several rounds. Each time, eliminate the one with the fewest first-place votes.

Instant runoff

Do several rounds. Each time, eliminate the one with the fewest first-place votes.

$$
\begin{array}{cccc}
1 & 3 & 2 & 4 \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{C} & \mathrm{~A} \\
\mathrm{~B} & \mathrm{C} & \mathrm{~A} & \mathrm{C} \\
\mathrm{C} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B}
\end{array}
$$

Instant runoff

Do several rounds. Each time, eliminate the one with the fewest first-place votes.

$$
\begin{array}{cccc}
1 & 3 & 2 & 4 \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{C} & \mathrm{~A} \\
\mathrm{~B} & \mathrm{C} & \mathrm{~A} & \mathrm{C} \\
\mathrm{C} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B}
\end{array}
$$

In the first round, we eliminate C.

Eliminating C looks like:

$$
\begin{array}{cccc}
1 & 3 & 2 & 4 \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{C} & \mathrm{~A} \\
\mathrm{~B} & \mathrm{C} & \mathrm{~A} & \mathrm{C} \\
\mathrm{C} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B}
\end{array} \rightarrow \begin{array}{llll}
1 & 3 & 2 & 4 \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{~A} & \mathrm{~A} \\
\mathrm{~B} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B}
\end{array}
$$

Eliminating C looks like:

$$
\begin{array}{llll}
1 & 3 & 2 & 4 \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{C} & \mathrm{~A} \\
\mathrm{~B} & \mathrm{C} & \mathrm{~A} & \mathrm{C} \\
\mathrm{C} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B}
\end{array} \rightarrow \begin{array}{llll}
1 & 3 & 2 & 4 \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{~A} & \mathrm{~A} \\
\mathrm{~B} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B}
\end{array}=\begin{array}{ll}
7 & 3 \\
\mathrm{~A} & \mathrm{~B} \\
\mathrm{~B} & \mathrm{~A}
\end{array}
$$

Eliminating C looks like:

$$
\begin{array}{llll}
1 & 3 & 2 & 4 \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{C} & \mathrm{~A} \\
\mathrm{~B} & \mathrm{C} & \mathrm{~A} & \mathrm{C} \\
\mathrm{C} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B}
\end{array} \rightarrow \begin{array}{llll}
1 & 3 & 2 & 4 \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{~A} & \mathrm{~A} \\
\mathrm{~B} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B}
\end{array}=\begin{array}{ll}
7 & 3 \\
\hline \mathrm{~A} & \mathrm{~B} \\
\mathrm{~B} & \mathrm{~A}
\end{array}
$$

Now we eliminate B and A wins.

Eliminating C looks like:

$$
\begin{array}{llll}
1 & 3 & 2 & 4 \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{C} & \mathrm{~A} \\
\mathrm{~B} & \mathrm{C} & \mathrm{~A} & \mathrm{C} \\
\mathrm{C} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B}
\end{array} \rightarrow \begin{array}{llll}
1 & 3 & 2 & 4 \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{~A} & \mathrm{~A} \\
\mathrm{~B} & \mathrm{~A} & \mathrm{~B} & \mathrm{~B}
\end{array}=\begin{array}{ll}
7 & 3 \\
\hline \mathrm{~A} & \mathrm{~B} \\
\mathrm{~B} & \mathrm{~A}
\end{array}
$$

Now we eliminate B and A wins.

This method is used in Australia, Ireland, and a few local elections in US.

IRV Variations

IRV Variations

Coombs: Same as instant runoff, but in each step eliminate the one with the most losing votes. (instead of the one with the fewest winning votes)

IRV Variations

Coombs: Same as instant runoff, but in each step eliminate the one with the most losing votes. (instead of the one with the fewest winning votes)

Baldwin: In each round, eliminate the one with the lowest Borda score.

IRV Variations

Coombs: Same as instant runoff, but in each step eliminate the one with the most losing votes. (instead of the one with the fewest winning votes)

Baldwin: In each round, eliminate the one with the lowest Borda score.

Are these all equivalent?

IRV Variations

Coombs: Same as instant runoff, but in each step eliminate the one with the most losing votes. (instead of the one with the fewest winning votes)

Baldwin: In each round, eliminate the one with the lowest Borda score.

Are these all equivalent? no

Pairwise comparisons

Pit the candidates against each other one-on-one in all possible matchups

Pairwise comparisons

Pit the candidates against each other one-on-one in all possible matchups

Whoever wins the most of these wins the election.

Random dictator

The craziest of all of these.

Random dictator

The craziest of all of these.

Choose a single ballot at random, their first-place choice wins the election.

Random dictator

The craziest of all of these.

Choose a single ballot at random, their first-place choice wins the election.

Sounds ridiculous because it's nondeterministic

Random dictator

The craziest of all of these.

Choose a single ballot at random, their first-place choice wins the election.

Sounds ridiculous because it's nondeterministic

But a person with $x \%$ support will win the election with probability $x \%$, which doesn't sound too bad.

A little digression

Votes by lottery were common in ancient democracies.

A little digression

Votes by lottery were common in ancient democracies. In ancient Athens, almost all government offices were filled by lottery.

A little digression

Votes by lottery were common in ancient democracies. In ancient Athens, almost all government offices were filled by lottery.

In their view, election by voting favored candidates who were rich, eloquent, and well-known.

A little digression

Votes by lottery were common in ancient democracies. In ancient Athens, almost all government offices were filled by lottery.

In their view, election by voting favored candidates who were rich, eloquent, and well-known.

Aristotle, Politics: "It is accepted as democratic when public offices are allocated by lot; and as oligarchic when they are filled by election."

A little digression

Votes by lottery were common in ancient democracies. In ancient Athens, almost all government offices were filled by lottery.

In their view, election by voting favored candidates who were rich, eloquent, and well-known.

Aristotle, Politics: "It is accepted as democratic when public offices are allocated by lot; and as oligarchic when they are filled by election."

Voting was not viewed as an important component of democracy.

A little digression

Votes by lottery were common in ancient democracies. In ancient Athens, almost all government offices were filled by lottery.

In their view, election by voting favored candidates who were rich, eloquent, and well-known.

Aristotle, Politics: "It is accepted as democratic when public offices are allocated by lot; and as oligarchic when they are filled by election."

Voting was not viewed as an important component of democracy.

A true government "of the people" should be made up of ordinary people, chosen at random.

Results!

Let's see the results of our election.

Results!

Let's see the results of our election.

Moral of the story:

Results!

Let's see the results of our election.

Moral of the story:

Different reasonable voting methods produce different outcomes.

Fairness

So which method should be used?

Fairness

So which method should be used?

We need some criteria for judging fairness of the methods.

Fairness

So which method should be used?

We need some criteria for judging fairness of the methods.

Hopefully we can come up with some basic principles for fairness,

Fairness

So which method should be used?

We need some criteria for judging fairness of the methods.

Hopefully we can come up with some basic principles for fairness, and choose a system which satisfies them all.

I've got 3 basic categories for fairness:

- Preferences:

I've got 3 basic categories for fairness:

- Preferences: The winner should be "preferred" over the losers

I've got 3 basic categories for fairness:

- Preferences: The winner should be "preferred" over the losers
- Decisions:

I've got 3 basic categories for fairness:

- Preferences: The winner should be "preferred" over the losers
- Decisions: If someone switches their vote, the election outcome should change "appropriately"

I've got 3 basic categories for fairness:

- Preferences: The winner should be "preferred" over the losers
- Decisions: If someone switches their vote, the election outcome should change "appropriately"
- Honesty:

I've got 3 basic categories for fairness:

- Preferences: The winner should be "preferred" over the losers
- Decisions: If someone switches their vote, the election outcome should change "appropriately"
- Honesty: Voters should have no incentive to vote "dishonestly" in order to game the system

I've got 3 basic categories for fairness:

- Preferences: The winner should be "preferred" over the losers
- Decisions: If someone switches their vote, the election outcome should change "appropriately"
- Honesty: Voters should have no incentive to vote "dishonestly" in order to game the system

Let's talk some specific ways to measure these kinds of fairness.

Preferences-based fairness

For preferences-based fairness, we'll discuss two specific criteria.

Preferences-based fairness

For preferences-based fairness, we'll discuss two specific criteria.

These are an attempt to define specifically the idea that the winner should be preferred over the losers

The majority criterion

The majority criterion

If a majority of people rank candidate X first, then X should win the election.

The majority criterion

If a majority of people rank candidate X first, then X should win the election.

This is a very reasonable fairness criterion, and is satisfied by the plurality system.

The majority criterion

If a majority of people rank candidate X first, then X should win the election.

This is a very reasonable fairness criterion, and is satisfied by the plurality system.

Not satisfied by Borda count:

4	3
A	B
B	C
C	A

The majority criterion

If a majority of people rank candidate X first, then X should win the election.

This is a very reasonable fairness criterion, and is satisfied by the plurality system.

Not satisfied by Borda count:

4	3
A	B
B	C
C	A

In the Borda count, A gets 15 and B gets 19 .

The majority criterion

If a majority of people rank candidate X first, then X should win the election.

This is a very reasonable fairness criterion, and is satisfied by the plurality system.

Not satisfied by Borda count:

4	3
A	B
B	C
C	A

In the Borda count, A gets 15 and B gets 19 .
Here, A is ranked first by a majority, but B wins in the Borda count.

The Condorcet criterion

The Condorcet criterion

If some candidate wins in every pairwise comparison, then they should win the election.

The Condorcet criterion

If some candidate wins in every pairwise comparison, then they should win the election.

A candidate like this would be preferred by a majority when compared individually to anybody else.

The Condorcet criterion

If some candidate wins in every pairwise comparison, then they should win the election.

A candidate like this would be preferred by a majority when compared individually to anybody else.

Such a candidate is called a Condorcet winner.

The Condorcet criterion

If some candidate wins in every pairwise comparison, then they should win the election.

A candidate like this would be preferred by a majority when compared individually to anybody else.

Such a candidate is called a Condorcet winner.

This is also a very reasonable fairness criterion.

Twiddle-Dee \& Twiddle-Dum

Let's use the 2000 (G. W. Bush vs Gore) election as an example.

Twiddle-Dee \& Twiddle-Dum

Let's use the 2000 (G. W. Bush vs Gore) election as an example.

The votes were very close in Florida, and basically tied otherwise, so the election would be decided by Florida.

Twiddle-Dee \& Twiddle-Dum

Let's use the 2000 (G. W. Bush vs Gore) election as an example.

The votes were very close in Florida, and basically tied otherwise, so the election would be decided by Florida.

Here's the final vote totals in Florida:

Twiddle-Dee \& Twiddle-Dum

Let's use the 2000 (G. W. Bush vs Gore) election as an example.

The votes were very close in Florida, and basically tied otherwise, so the election would be decided by Florida.

Here's the final vote totals in Florida:

$$
\begin{array}{l|l}
\hline \text { Bush } & 2,912,790
\end{array}
$$

Twiddle-Dee \& Twiddle-Dum

Let's use the 2000 (G. W. Bush vs Gore) election as an example.

The votes were very close in Florida, and basically tied otherwise, so the election would be decided by Florida.

Here's the final vote totals in Florida:

Bush	$2,912,790$
Gore	$2,912,253$

Twiddle-Dee \& Twiddle-Dum

Let's use the 2000 (G. W. Bush vs Gore) election as an example.

The votes were very close in Florida, and basically tied otherwise, so the election would be decided by Florida.

Here's the final vote totals in Florida:

$$
\begin{array}{r|r}
\hline \text { Bush } & 2,912,790 \\
\text { Gore } & 2,912,253 \\
\text { Nader } & 97,488
\end{array}
$$

Twiddle-Dee \& Twiddle-Dum

Let's use the 2000 (G. W. Bush vs Gore) election as an example.

The votes were very close in Florida, and basically tied otherwise, so the election would be decided by Florida.

Here's the final vote totals in Florida:

Bush	$2,912,790$
Gore	$2,912,253$
Nader	97,488
Others	40,579

Bush	$2,912,790$
Gore	$2,912,253$
Nader	97,488

Nader is typically described as "far left" on most issues,

Bush	$2,912,790$
Gore	$2,912,253$
Nader	97,488

Nader is typically described as "far left" on most issues, and it's fair to say most of his voters would have preferred Gore over Bush.

Bush	$2,912,790$
Gore	$2,912,253$
Nader	97,488

Nader is typically described as "far left" on most issues, and it's fair to say most of his voters would have preferred Gore over Bush.

So if there had been preferences recorded at the ballot, they might've looked like this:

$2,912,790$	$2,912,253$	97,488
B	G	N
G	B	G
N	N	B

$2,912,790$	$2,912,253$	97,488
B	G	N
G	B	G
N	N	B

$2,912,790$	$2,912,253$	97,488
B	G	N
G	B	G
N	N	B

Here, Gore is a Condorcet winner.

$2,912,790$	$2,912,253$	97,488
B	G	N
G	B	G
N	N	B

Here, Gore is a Condorcet winner.
But Bush is the plurality winner.

$2,912,790$	$2,912,253$	97,488
B	G	N
G	B	G
N	N	B

Here, Gore is a Condorcet winner.
But Bush is the plurality winner.
The plurality system does not satisfy the Condorcet criterion.

$2,912,790$	$2,912,253$	97,488
B	G	N
G	B	G
N	N	B

Here, Gore is a Condorcet winner.
But Bush is the plurality winner.
The plurality system does not satisfy the Condorcet criterion.

Decisions-based fairness

Let's discuss two criteria related to decision-making.

Decisions-based fairness

Let's discuss two criteria related to decision-making.

We'll formalize the idea that if someone switches their vote, the election outcome should change "appropriately"

Monotonicity

"Monotonicity" is a mathematical word meaning that "things move in the same direction".

Monotonicity

"Monotonicity" is a mathematical word meaning that "things move in the same direction".

If somebody changes their vote to boost X 's ranking without changing the others' relative rankings, this should not hurt X.

Monotonicity

"Monotonicity" is a mathematical word meaning that "things move in the same direction".

If somebody changes their vote to boost X 's ranking without changing the others' relative rankings, this should not hurt X.
(this should never cause X to switch from winning to losing)

Monotonicity

"Monotonicity" is a mathematical word meaning that "things move in the same direction".

If somebody changes their vote to boost X 's ranking without changing the others' relative rankings, this should not hurt X.
(this should never cause X to switch from winning to losing)

This is satisfied by plurality and Borda count, so they seem pretty fair.

Irrelevant Alternatives

If somebody changes their vote without changing the winner's relative ranking with respect to anybody else, this should not affect the outcome of the election.

Irrelevant Alternatives

If somebody changes their vote without changing the winner's relative ranking with respect to anybody else, this should not affect the outcome of the election.

Imagine this election between Romney \& Obama, with some third parties:

Irrelevant Alternatives

If somebody changes their vote without changing the winner's relative ranking with respect to anybody else, this should not affect the outcome of the election.

Imagine this election between Romney \& Obama, with some third parties:
Say I rank them: Obama, Romney, Johnson, Stein.

Irrelevant Alternatives

If somebody changes their vote without changing the winner's relative ranking with respect to anybody else, this should not affect the outcome of the election.

Imagine this election between Romney \& Obama, with some third parties:
Say I rank them: Obama, Romney, Johnson, Stein.

Say Romney wins, then I say "wait! I meant Obama, Romney, Stein, Johnson!"

Irrelevant Alternatives

If somebody changes their vote without changing the winner's relative ranking with respect to anybody else, this should not affect the outcome of the election.

Imagine this election between Romney \& Obama, with some third parties:
Say I rank them: Obama, Romney, Johnson, Stein.

Say Romney wins, then I say "wait! I meant Obama, Romney, Stein, Johnson!"

This is an "irrelvant alternative".

Irrelevant Alternatives

If somebody changes their vote without changing the winner's relative ranking with respect to anybody else, this should not affect the outcome of the election.

Imagine this election between Romney \& Obama, with some third parties:
Say I rank them: Obama, Romney, Johnson, Stein.

Say Romney wins, then I say "wait! I meant Obama, Romney, Stein, Johnson!"

This is an "irrelvant alternative".

In a fair system, this kind of change should not affect the election results.

Again this sounds like a reasonable criterion for fairness.

Again this sounds like a reasonable criterion for fairness.
But the plurality system does not satisfy this.

Again this sounds like a reasonable criterion for fairness.

But the plurality system does not satisfy this.

$2,912,790$	$2,912,253$	97,488
B	G	N
G	B	G
N	N	B

Bush is the plurality winner.

Again this sounds like a reasonable criterion for fairness.

But the plurality system does not satisfy this.

$2,912,790$	$2,912,253$	97,488
B	G	N
G	B	G
N	N	B

Bush is the plurality winner.
Now if the $N G B$ voters change to $G N B$, this is an irrelevant alternative.

Again this sounds like a reasonable criterion for fairness.

But the plurality system does not satisfy this.

$2,912,790$	$2,912,253$	97,488
B	G	N
G	B	G
N	N	B

Bush is the plurality winner.
Now if the $N G B$ voters change to $G N B$, this is an irrelevant alternative.
But this will cause Gore to become the winner.

Again this sounds like a reasonable criterion for fairness.

But the plurality system does not satisfy this.

$2,912,790$	$2,912,253$	97,488
B	G	N
G	B	G
N	N	B

Bush is the plurality winner.
Now if the $N G B$ voters change to $G N B$, this is an irrelevant alternative.
But this will cause Gore to become the winner.
So the plurality system does not satisfy the irrelevant alternatives criterion.

Honesty-based fairness

One more fairness criterion, of the "Honesty" type.

Honesty-based fairness

One more fairness criterion, of the "Honesty" type.

A voter should not have any incentive to vote dishonestly

Honesty-based fairness

One more fairness criterion, of the "Honesty" type.

A voter should not have any incentive to vote dishonestly

Such a system is called "strategy-proof".

Honesty-based fairness

One more fairness criterion, of the "Honesty" type.

A voter should not have any incentive to vote dishonestly

Such a system is called "strategy-proof".

If your system is not strategy-proof, the voters need to think carefully about voting "tactically", rather than voting their true preferences.

The plurality system fails miserably here.

The plurality system fails miserably here.

$2,912,790$	$2,912,253$	97,488
B	G	N
G	B	G
N	N	B

The plurality system fails miserably here.

$2,912,790$	$2,912,253$	97,488
B	G	N
G	B	G
N	N	B

The Nader voters would have a better outcome if they'd voted for Gore.

The plurality system fails miserably here.

$2,912,790$	$2,912,253$	97,488
B	G	N
G	B	G
N	N	B

The Nader voters would have a better outcome if they'd voted for Gore.

Their honesty caused Bush to win, which was their last choice.

This aspect of the plurality system has deep consequences for our whole political structure.

This aspect of the plurality system has deep consequences for our whole political structure.

Strategy in our system is based fundamentally on avoiding "vote-splitting".

This aspect of the plurality system has deep consequences for our whole political structure.

Strategy in our system is based fundamentally on avoiding "vote-splitting".

A vote for anybody other than the winner is a wasted vote.

This aspect of the plurality system has deep consequences for our whole political structure.

Strategy in our system is based fundamentally on avoiding "vote-splitting".

A vote for anybody other than the winner is a wasted vote.

This makes politicians always claim that they're winning.

This aspect of the plurality system has deep consequences for our whole political structure.

Strategy in our system is based fundamentally on avoiding "vote-splitting".

A vote for anybody other than the winner is a wasted vote.

This makes politicians always claim that they're winning.

This makes the two parties indestructible.

There is a basic principle in political science known as Duverger's Law (1950s):

There is a basic principle in political science known as Duverger's Law (1950s):

Any political structure based on plurality will, after sufficient elapsed time, develop into a two-party system.

There is a basic principle in political science known as Duverger's Law (1950s):

Any political structure based on plurality will, after sufficient elapsed time, develop into a two-party system.

This is true in our world with very few exceptions. (Canada, UK)

Criteria summary

This can all be worked out:

	Maj.	Cond.	Mono.	IA	Strategy-proof
Plurality/ Anti-plurality	\checkmark	\times	\checkmark	\times	\times
Borda	\times	\times	\checkmark	\times	\times
Instant runoff / Coombs	\checkmark	\times	\times	\times	\times
Baldwin	\checkmark	\checkmark	\times	\times	\times
Pairwise Comparison	\checkmark	\checkmark	\checkmark	\times	\times
Random dictator	\times	\times	\checkmark	\checkmark	\checkmark

Criteria summary

This can all be worked out:

	Maj.	Cond.	Mono.	IA	Strategy-proof
Plurality/ Anti-plurality	\checkmark	\times	\checkmark	\times	\times
Borda	\times	\times	\checkmark	\times	\times
Instant runoff / Coombs	\checkmark	\times	\times	\times	\times
Baldwin	\checkmark	\checkmark	\times	\times	\times
Pairwise Comparison	\checkmark	\checkmark	\checkmark	\times	\times
Random dictator	\times	\times	\checkmark	\checkmark	\checkmark

By this table, Borda \& Instant runoff look pretty bad

Criteria summary

This can all be worked out:

	Maj.	Cond.	Mono.	IA	Strategy-proof
Plurality/ Anti-plurality	\checkmark	\times	\checkmark	\times	\times
Borda	\times	\times	\checkmark	\times	\times
Instant runoff / Coombs	\checkmark	\times	\times	\times	\times
Baldwin	\checkmark	\checkmark	\times	\times	\times
Pairwise Comparison	\checkmark	\checkmark	\checkmark	\times	\times
Random dictator	\times	\times	\checkmark	\checkmark	\checkmark

By this table, Borda \& Instant runoff look pretty bad
Pairwise Comparison and Random dictator look pretty good!

Criteria summary

This can all be worked out:

	Maj.	Cond.	Mono.	IA	Strategy-proof
Plurality/ Anti-plurality	\checkmark	\times	\checkmark	\times	\times
Borda	\times	\times	\checkmark	\times	\times
Instant runoff / Coombs	\checkmark	\times	\times	\times	\times
Baldwin	\checkmark	\checkmark	\times	\times	\times
Pairwise Comparison	\checkmark	\checkmark	\checkmark	\times	\times
Random dictator	\times	\times	\checkmark	\checkmark	\checkmark

By this table, Borda \& Instant runoff look pretty bad
Pairwise Comparison and Random dictator look pretty good!
Of course there are other criteria, so this is not the definitive table.

Criteria summary

This can all be worked out:

	Maj.	Cond.	Mono.	IA	Strategy-proof
Plurality/ Anti-plurality	\checkmark	\times	\checkmark	\times	\times
Borda	\times	\times	\checkmark	\times	\times
Instant runoff / Coombs	\checkmark	\times	\times	\times	\times
Baldwin	\checkmark	\checkmark	\times	\times	\times
Pairwise Comparison	\checkmark	\checkmark	\checkmark	\times	\times
Random dictator	\times	\times	\checkmark	\checkmark	\checkmark

By this table, Borda \& Instant runoff look pretty bad
Pairwise Comparison and Random dictator look pretty good!
Of course there are other criteria, so this is not the definitive table.
And one can discuss the degree of failure on various criteria.

The bad news

The bad news

Is there a voting system that satisfies all of these criteria?

The bad news

Is there a voting system that satisfies all of these criteria?

No.

The bad news

Is there a voting system that satisfies all of these criteria?

No.

There are two classic "impossibility theorems" which show that no system can obey all of these.

Arrow's theorem

Arrow (1950s): No voting system can satisfy the Condorcet criterion and the irrelevant alternatives criterion.

Arrow's theorem

Arrow (1950s): No voting system can satisfy the Condorcet criterion and the irrelevant alternatives criterion.
(Actually Arrow's original theorem is stronger, but we'll just talk about this version)

Arrow's theorem

Arrow (1950s): No voting system can satisfy the Condorcet criterion and the irrelevant alternatives criterion.
(Actually Arrow's original theorem is stronger, but we'll just talk about this version)

Bad news for voting in general.

Arrow's theorem

Arrow (1950s): No voting system can satisfy the Condorcet criterion and the irrelevant alternatives criterion.
(Actually Arrow's original theorem is stronger, but we'll just talk about this version)

Bad news for voting in general.

When choosing a voting system, we have to decide whether we want Condorcet or IA.

Arrow's theorem

Arrow (1950s): No voting system can satisfy the Condorcet criterion and the irrelevant alternatives criterion.
(Actually Arrow's original theorem is stronger, but we'll just talk about this version)

Bad news for voting in general.

When choosing a voting system, we have to decide whether we want Condorcet or IA. You can't have both.

Arrow's theorem

Arrow (1950s): No voting system can satisfy the Condorcet criterion and the irrelevant alternatives criterion.
(Actually Arrow's original theorem is stronger, but we'll just talk about this version)

Bad news for voting in general.

When choosing a voting system, we have to decide whether we want Condorcet or IA. You can't have both. (Plurality has neither.)

Remember 30 minutes ago:

Remember 30 minutes ago:

We want a voting system such that:

- If the people actually have a uniform preference, the decision should reflect this.
- The decision should not depend on irrelevant details of the preferences.

Remember 30 minutes ago:

We want a voting system such that:

- If the people actually have a uniform preference, the decision should reflect this.
- The decision should not depend on irrelevant details of the preferences.

This is impossible.

Actually it's easy to see why Arrow's theorem is true for a ranked voting system with no ties:

Actually it's easy to see why Arrow's theorem is true for a ranked voting system with no ties:

Let's assume that there is a system with the Condorcet winner criterion and the irrelvant alternatives criterion, and this will lead to a contradiction.

Actually it's easy to see why Arrow's theorem is true for a ranked voting system with no ties:

Let's assume that there is a system with the Condorcet winner criterion and the irrelvant alternatives criterion, and this will lead to a contradiction.

Imagine the election:

$$
\begin{array}{ccc}
1 & 1 & 1 \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{C} \\
\mathrm{~B} & \mathrm{C} & \mathrm{~A} \\
\mathrm{C} & \mathrm{~A} & \mathrm{~B}
\end{array}
$$

Actually it's easy to see why Arrow's theorem is true for a ranked voting system with no ties:

Let's assume that there is a system with the Condorcet winner criterion and the irrelvant alternatives criterion, and this will lead to a contradiction.

Imagine the election:

$$
\begin{array}{ccc}
1 & 1 & 1 \\
\hline \mathrm{~A} & \mathrm{~B} & \mathrm{C} \\
\mathrm{~B} & \mathrm{C} & \mathrm{~A} \\
\mathrm{C} & \mathrm{~A} & \mathrm{~B}
\end{array}
$$

All the votes are symmetric- let's imagine that A is chosen as the winner.

1	1	1
A	B	C
B	C	A
C	A	B

A wins.

1	1	1
A	B	C
B	C	A
C	A	B

A wins.
Now if $B C A$ changes to $C B A$, this is an irrelvant alternative.

1	1	1
A	B	C
B	C	A
C	A	B

A wins.
Now if BCA changes to $C B A$, this is an irrelvant alternative. Since our system obeys the irrelevant alternatives criterion, A will still win in:

$$
\begin{array}{ccc}
1 & 1 & 1 \\
\hline \mathrm{~A} & \mathrm{C} & \mathrm{C} \\
\mathrm{~B} & \mathrm{~B} & \mathrm{~A} \\
\mathrm{C} & \mathrm{~A} & \mathrm{~B}
\end{array}
$$

1	1	1
A	B	C
B	C	A
C	A	B

A wins.
Now if BCA changes to $C B A$, this is an irrelvant alternative. Since our system obeys the irrelevant alternatives criterion, A will still win in:

$$
\begin{array}{lll}
1 & 1 & 1 \\
\hline \mathrm{~A} & \mathrm{C} & \mathrm{C} \\
\mathrm{~B} & \mathrm{~B} & \mathrm{~A} \\
\mathrm{C} & \mathrm{~A} & \mathrm{~B}
\end{array}
$$

But now C is a Condorcet winner, so C must win because our system obeys the Condorcet criterion.

1	1	1
A	B	C
B	C	A
C	A	B

A wins.
Now if $B C A$ changes to $C B A$, this is an irrelvant alternative. Since our system obeys the irrelevant alternatives criterion, A will still win in:

$$
\begin{array}{lll}
1 & 1 & 1 \\
\hline \mathrm{~A} & \mathrm{C} & \mathrm{C} \\
\mathrm{~B} & \mathrm{~B} & \mathrm{~A} \\
\mathrm{C} & \mathrm{~A} & \mathrm{~B}
\end{array}
$$

But now C is a Condorcet winner, so C must win because our system obeys the Condorcet criterion.
But we just said A wins, so this is a contradiction.

The Gibbard-Satterthwaite theorem

Another bit of bad news.

The Gibbard-Satterthwaite theorem

Another bit of bad news.

Gibbard \& Satterthwaite (1970s): For any voting system, one of the following must be true:

The Gibbard-Satterthwaite theorem

Another bit of bad news.

Gibbard \& Satterthwaite (1970s): For any voting system, one of the following must be true:

- The system is dictatorial

The Gibbard-Satterthwaite theorem

Another bit of bad news.

Gibbard \& Satterthwaite (1970s): For any voting system, one of the following must be true:

- The system is dictatorial
- The system is rigged against one of the candidates

The Gibbard-Satterthwaite theorem

Another bit of bad news.

Gibbard \& Satterthwaite (1970s): For any voting system, one of the following must be true:

- The system is dictatorial
- The system is rigged against one of the candidates
- The system is not strategy-proof

The Gibbard-Satterthwaite theorem

Another bit of bad news.

Gibbard \& Satterthwaite (1970s): For any voting system, one of the following must be true:

- The system is dictatorial
- The system is rigged against one of the candidates
- The system is not strategy-proof

The first two are obviously unreasonable for real voting systems, so the summary is:

The Gibbard-Satterthwaite theorem

Another bit of bad news.

Gibbard \& Satterthwaite (1970s): For any voting system, one of the following must be true:

- The system is dictatorial
- The system is rigged against one of the candidates
- The system is not strategy-proof

The first two are obviously unreasonable for real voting systems, so the summary is:

No reasonable voting system is strategy-proof.

Bad news summary:

Bad news summary:

No voting system can be fair with respect to Condorcet winners while correctly disregarding irrelevant alternatives. (Arrow)

Bad news summary:

No voting system can be fair with respect to Condorcet winners while correctly disregarding irrelevant alternatives. (Arrow)

Voters under any reasonable voting system have an incentive to try to game the system. (Gibbard-Satterthwaite)

Bad news summary:

No voting system can be fair with respect to Condorcet winners while correctly disregarding irrelevant alternatives. (Arrow)

Voters under any reasonable voting system have an incentive to try to game the system. (Gibbard-Satterthwaite)

Note: It's not just that we haven't yet figured out how to get around the issues.

Bad news summary:

No voting system can be fair with respect to Condorcet winners while correctly disregarding irrelevant alternatives. (Arrow)

Voters under any reasonable voting system have an incentive to try to game the system. (Gibbard-Satterthwaite)

Note: It's not just that we haven't yet figured out how to get around the issues.

They are mathematically unavoidable.

So what should we do?

The concept of perfectly fair voting is logically impossible.

So what should we do?

The concept of perfectly fair voting is logically impossible. So what should we do?

So what should we do?

The concept of perfectly fair voting is logically impossible. So what should we do?

No clear answers.

So what should we do?

The concept of perfectly fair voting is logically impossible. So what should we do?

No clear answers.

Winston Churchill (1947): "democracy is the worst form of government except all those other forms that have been tried"

So what should we do?

The concept of perfectly fair voting is logically impossible. So what should we do?

No clear answers.

Winston Churchill (1947): "democracy is the worst form of government except all those other forms that have been tried"

We shouldn't abandon voting.

Should we continue to use the plurality system?

Pros:

Should we continue to use the plurality system?

Pros: Simplicity.

Should we continue to use the plurality system?

Pros: Simplicity. Easy for voters to understand

Should we continue to use the plurality system?

Pros: Simplicity. Easy for voters to understand, easy to tabulate results.

Should we continue to use the plurality system?

Pros: Simplicity. Easy for voters to understand, easy to tabulate results.

Cons:

Should we continue to use the plurality system?

Pros: Simplicity. Easy for voters to understand, easy to tabulate results.

Cons: Not Condorcet-fair (etc.)

Should we continue to use the plurality system?

Pros: Simplicity. Easy for voters to understand, easy to tabulate results.

Cons: Not Condorcet-fair (etc.), encourages "only vote for the winner"

Should we continue to use the plurality system?

Pros: Simplicity. Easy for voters to understand, easy to tabulate results.

Cons: Not Condorcet-fair (etc.), encourages "only vote for the winner", preserves the two-party system

Should we continue to use the plurality system?

Pros: Simplicity. Easy for voters to understand, easy to tabulate results.

Cons: Not Condorcet-fair (etc.), encourages "only vote for the winner", preserves the two-party system

Lots of our political disfunction can be blamed on the primacy of the two parties

Should we continue to use the plurality system?

Pros: Simplicity. Easy for voters to understand, easy to tabulate results.

Cons: Not Condorcet-fair (etc.), encourages "only vote for the winner", preserves the two-party system

Lots of our political disfunction can be blamed on the primacy of the two parties, but most people see this as unavoidable.

Should we continue to use the plurality system?

Pros: Simplicity. Easy for voters to understand, easy to tabulate results.

Cons: Not Condorcet-fair (etc.), encourages "only vote for the winner", preserves the two-party system

Lots of our political disfunction can be blamed on the primacy of the two parties, but most people see this as unavoidable.

It's not.

Should we continue to use the plurality system?

Pros: Simplicity. Easy for voters to understand, easy to tabulate results.

Cons: Not Condorcet-fair (etc.), encourages "only vote for the winner", preserves the two-party system

Lots of our political disfunction can be blamed on the primacy of the two parties, but most people see this as unavoidable.

It's not. It's caused by our use of the plurality system.

Will Democratic and Republican politicians ever seriously consider dismantling the plurality system?

Will Democratic and Republican politicians ever seriously consider dismantling the plurality system?

The system which voters don't even think about, but the parties depend on for survival?

Will Democratic and Republican politicians ever seriously consider dismantling the plurality system?

The system which voters don't even think about, but the parties depend on for survival?

Picture from User:Durova at Wikimedia Commons, CC-BY-SA

Will Democratic and Republican politicians ever seriously consider dismantling the plurality system?

The system which voters don't even think about, but the parties depend on for survival?

Will Democratic and Republican politicians ever seriously consider dismantling the plurality system?

The system which voters don't even think about, but the parties depend on for survival?

Picture from Joel Telling at Flickr, CC-BY-SA

The end!

Read Wikipedia "Voting system" for lots more info and references.
http://faculty.fairfield.edu/cstaecker for these slides

